Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (1)

Search Parameters:
Keywords = AnHV

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3729 KiB  
Article
Highly Sensitive Duplex Quantitative PCR Assay for Simultaneous Detection of Two Japanese Eel Viruses, Anguillid Herpesvirus 1 and Japanese Eel Endothelial Cells-Infecting Virus
by Jun-Young Song, Keun-Yong Kim and Ahran Kim
Biology 2025, 14(3), 264; https://doi.org/10.3390/biology14030264 - 5 Mar 2025
Cited by 2 | Viewed by 798
Abstract
Japanese eel endothelial cells-infecting virus (JEECV) and Anguillid herpesvirus 1 (AnHV) are major pathogens in farmed eels. JEECV causes eel viral endothelial cell necrosis (VECNE), while AnHV leads to symptoms such as head erythema and gill necrosis. Both viruses cause severe mortality alone [...] Read more.
Japanese eel endothelial cells-infecting virus (JEECV) and Anguillid herpesvirus 1 (AnHV) are major pathogens in farmed eels. JEECV causes eel viral endothelial cell necrosis (VECNE), while AnHV leads to symptoms such as head erythema and gill necrosis. Both viruses cause severe mortality alone or in combination, necessitating rapid and early detection of their presences. In this study, we developed a highly efficient duplex quantitative PCR method (r2 = 0.999) using hydrolysis probes for the rapid and simultaneous detections of AnHV and JEECV. This new diagnostic method demonstrated a 1.7-fold higher detection rate for AnHV and a 2.5-fold higher detection rate for JEECV than conventional PCR. Quantitative analysis of water and eel tissue samples from aquaculture facilities revealed that the two viruses could be detected in water 1–3 months prior to mortality, enabling their early identification of infections through water testing alone. Notably, the method reliably detected low viral loads (< 1 copy) in both water and tissue samples, facilitating preclinical detection and proactive disease management. This approach reduces the risk of mass mortality and economic losses in eel farming. This study underscores the critical role of advanced molecular diagnostic technologies in enhancing health management in aquaculture. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

Back to TopTop