Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Amynthas agrestis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2788 KB  
Article
Do the Invasive Earthworms Amynthas agrestis (Oligochaeta: Megascolecidae) and Lumbricus rubellus (Oligochaeta: Lumbricidae) Stimulate Oxalate-Based Browser Defenses in Jack-in-the-Pulpit (Arisaema triphyllum) by Their Presence or Their Soil Biogeochemical Activity?
by Ryan D. S. Melnichuk, Hüseyin Barış Tecimen and Josef H. Görres
Soil Syst. 2022, 6(1), 11; https://doi.org/10.3390/soilsystems6010011 - 18 Jan 2022
Cited by 3 | Viewed by 3605
Abstract
The introduction of invasive earthworms initiates physical and chemical alterations in previously earthworm-free forest soils, which triggers an ecological cascade. The most apparent step is the shift in the herbaceous plant community composition. However, some species, such as Arisaema triphyllum (jack-in-the-pulpit), persist where [...] Read more.
The introduction of invasive earthworms initiates physical and chemical alterations in previously earthworm-free forest soils, which triggers an ecological cascade. The most apparent step is the shift in the herbaceous plant community composition. However, some species, such as Arisaema triphyllum (jack-in-the-pulpit), persist where earthworms are present. It has been hypothesized that A. triphyllum produces insoluble oxalate, an herbivory deterrent, in the presence of earthworms. This study aimed to distinguish between the effects of earthworm-induced changes in soils and the physical presence of earthworms on oxalate production. As such, a two-way factorial greenhouse trial was conducted using uninvaded soils to test this hypothesis for two invasive earthworm species (Amynthas agrestis and Lumbricus rubellus). The sequential extraction of oxalates in A. triphyllum corms was performed with absolute ethanol, deionized water, acetic acid and HCl, representing fractions of decreasing solubility. Earthworm presence increased water-soluble (p = 0.002) and total oxalate (p = 0.022) significantly, but only marginally significantly for HCl-soluble oxalate (p = 0.065). The corms of plants grown in soils previously exposed to the two species did not differ in oxalate production when earthworms were not present. However, the data suggest that earthworms affect corm oxalate concentrations and that the sequence of invasion matters for oxalate production by A. triphyllum. Full article
(This article belongs to the Special Issue Forest Soils: Functions, Threats, Management)
Show Figures

Figure 1

13 pages, 2226 KB  
Article
Physical Properties of Soils Altered by Invasive Pheretimoid Earthworms: Does Their Casting Layer Create Thermal Refuges?
by Josef H. Görres, Christina Martin, Maryam Nouri-Aiin and Korkmaz Bellitürk
Soil Syst. 2019, 3(3), 52; https://doi.org/10.3390/soilsystems3030052 - 15 Aug 2019
Cited by 12 | Viewed by 4280
Abstract
Pheretimoid earthworms are invasive in hardwood forests of formerly glaciated regions in the USA. They alter the forest floor structure by creating an extensive, several cm-deep casting layer comprising loose macro-aggregates. Little is known about the physical properties of the casting layer and [...] Read more.
Pheretimoid earthworms are invasive in hardwood forests of formerly glaciated regions in the USA. They alter the forest floor structure by creating an extensive, several cm-deep casting layer comprising loose macro-aggregates. Little is known about the physical properties of the casting layer and how they relate to earthworm ecology. Here, thermal and macropore properties of three forest soil textures (clay, silt, and sandy soils, with and without pheretimoids) were measured and compared to explore the possible relationships to their ecology. Thermal properties were significantly different between the casting layer (CAST) and original soil (NOCAST). Results indicate that CAST soils dampen temperature fluctuations occurring at the surface more than NOCAST soil. The increased dampening may be of particular importance to pheretimoid survival in forest fires and during spring when surface fluctuations could expose the hatchlings to fatal temperatures. Macropore volume, an indicator of ease of movement of pheretimoids, was significantly greater in CAST than NOCAST soil. Together, the ease of movement and greater temperature dampening of CAST soils may provide thermal refuges to pheretimoids from temperature variations outside the optimal range. This may improve their chances of survival in newly colonized areas where the climate differs from the original range. Full article
Show Figures

Figure 1

Back to TopTop