Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Alternaria section Undifilum oxytropis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 10516 KiB  
Article
Morphological and Phylogenetic Characterization of Alternaria Section Undifilum Fungal Endophytes from Astragalus and Swainsona spp.
by Marwa Neyaz, Olabisi Adebisi, Daniel Cook and Rebecca Creamer
J. Fungi 2025, 11(7), 541; https://doi.org/10.3390/jof11070541 - 19 Jul 2025
Viewed by 472
Abstract
The locoweeds Astragalus and Oxytropis in the Americas and China, as well as Swainsona in Australia, harbor swainsonine-producing endophytes responsible for “locoism” or “pea struck” syndromes in grazing animals. Demonstration of Alternaria section Undifilum spp. requires demonstration of morphological characters such as a [...] Read more.
The locoweeds Astragalus and Oxytropis in the Americas and China, as well as Swainsona in Australia, harbor swainsonine-producing endophytes responsible for “locoism” or “pea struck” syndromes in grazing animals. Demonstration of Alternaria section Undifilum spp. requires demonstration of morphological characters such as a wavy germ tube and slow growth. While Astragalus wetherilli, A. pubentissimus, Swainsona canescens, and S. galegifolia plants have been shown to contain swainsonine, and fungi isolated from the plants have been partially characterized genetically, the fungi have not been characterized morphologically. This work sought to complete morphological characterization and determine species for those fungi and from fungi associated with Swainsona luteola and S. brachycarpa. The fungi were isolated from their hosts onto media and exhibited slow growth, resulting in a colony diameter of approximately 10 mm after 30 days. Morphological identification revealed production of conidia that produced a wavy germ tube for the endophytes from Astragalus pubentissimus species, Swainsona canescens, and S. galegifolia. Sequence analyses of the ITS region and the swnK-KS and swnK-TR genes of these fungi suggest that the fungi isolated from Astragalus are closely related and distinct from the fungi isolated from Swainsona. Presence of the swnK gene demonstrates that all the fungi have a necessary component to produce swainsonine. Fungi isolated from Astragalus spp. differed in color, growth, and conidium size, and/or their sequences. While the fungi isolated from Swainsona canescens and S. galegifolia endophytes differed in color, growth, and conidium size, those isolated from Swainsona luteola and S. brachycarpa did not produce conidia. Sequences from all Swainsona endophytes were almost identical and were concluded to be the same species. The new species described here are Alternaria wetherii, A. pubentissima, A. pubentissimoides, and A. swainsonii. Full article
(This article belongs to the Special Issue Fungal Endophytes of Plants: Friend or Foe?)
Show Figures

Figure 1

15 pages, 2436 KiB  
Article
Construction of Yeast One-Hybrid Library of Alternaria oxytropis and Screening of Transcription Factors Regulating swnK Gene Expression
by Jiaqi Xue, Haodong Zhang, Qingmei Zhao, Shengwei Cui, Kun Yu, Ruohan Sun and Yongtao Yu
J. Fungi 2023, 9(8), 822; https://doi.org/10.3390/jof9080822 - 3 Aug 2023
Cited by 4 | Viewed by 2267
Abstract
The indolizidine alkaloid-swainsonine (SW) is the main toxic component of locoweeds and the main cause of locoweed poisoning in grazing animals. The endophytic fungi, Alternaria Section Undifilum spp., are responsible for the biosynthesis of SW in locoweeds. The swnK gene is a multifunctional [...] Read more.
The indolizidine alkaloid-swainsonine (SW) is the main toxic component of locoweeds and the main cause of locoweed poisoning in grazing animals. The endophytic fungi, Alternaria Section Undifilum spp., are responsible for the biosynthesis of SW in locoweeds. The swnK gene is a multifunctional complex enzyme encoding gene in fungal SW biosynthesis, and its encoding product plays a key role in the multistep catalytic synthesis of SW by fungi using pipecolic acid as a precursor. However, the transcriptional regulation mechanism of the swnK gene is still unclear. To identify the transcriptional regulators involved in the swnK gene in endophytic fungi of locoweeds, we first analyzed the upstream non-coding region of the swnK gene in the A. oxytropis UA003 strain and predicted its high transcriptional activity region combined with dual-luciferase reporter assay. Then, a yeast one-hybrid library of A. oxytropis UA003 strain was constructed, and the transcriptional regulatory factors that may bind to the high-transcriptional activity region of the upstream non-coding region of the swnK gene were screened by this system. The results showed that the high transcriptional activity region was located at −656 bp and −392 bp of the upstream regulatory region of the swnK gene. A total of nine candidate transcriptional regulator molecules, including a C2H2 type transcription factor, seven annotated proteins, and an unannotated protein, were screened out through the Y1H system, which were bound to the upstream high transcriptional activity region of the swnK gene. This study provides new insight into the transcriptional regulation of the swnK gene and lays the foundation for further exploration of the regulatory mechanisms of SW biosynthesis in fungal endophytic locoweeds. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

21 pages, 4839 KiB  
Article
Screening of Endophytic Fungi in Locoweed Induced by Heavy-Ion Irradiation and Study on Swainsonine Biosynthesis Pathway
by Yanan Mo, Zhen Yang, Baocheng Hao, Feng Cheng, Xiangdong Song, Xiaofei Shang, Haoxia Zhao, Ruofeng Shang, Xuehong Wang, Jianping Liang, Shengyi Wang and Yu Liu
J. Fungi 2022, 8(9), 951; https://doi.org/10.3390/jof8090951 - 10 Sep 2022
Cited by 6 | Viewed by 2032
Abstract
Swainsonine (SW) is a substance with both animal neurotoxicity and natural anticancer activity produced by the metabolism of endophytic fungus Alternaria section Undifilum oxytropis of locoweed. This paper produced SW by fermentation of the endophytic fungus A. oxytropis of locoweed and obtained the [...] Read more.
Swainsonine (SW) is a substance with both animal neurotoxicity and natural anticancer activity produced by the metabolism of endophytic fungus Alternaria section Undifilum oxytropis of locoweed. This paper produced SW by fermentation of the endophytic fungus A. oxytropis of locoweed and obtained the optimal ultrasonic-assisted extraction process of SW by the response surface methodology. Meanwhile, four mutant strains with significant and stable SW-producing properties were screened out after the mutagenesis of A. oxytropis by heavy-ion irradiation. Of these, three were high-yielding stains and one was a low-yielding strain. In addition, through the analysis of metabolomics studies, it was speculated that the different SW production performance of the mutant might be related to the biosynthesis and utilization of L-lysine, L-2-aminoadipate-6-semialdehyde, etc. These results laid the foundation for the expansion of SW production, artificial construction of low-toxic locoweed and clarification of the SW biosynthesis pathway in A. oxytropis. Full article
Show Figures

Figure 1

Back to TopTop