Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Alternaria alternata XHYN2 (Alt XHYN2)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4793 KiB  
Article
Cultivation of Fungal Endophytes with Tissue Culture Grapevine Seedlings Reprograms Metabolism by Triggering Defence Responses
by Xiaoxia Pan, Huizhi Liu, Yiqian Li, Lirong Guo, Yunuo Zhang, Youyong Zhu and Mingzhi Yang
Metabolites 2024, 14(8), 402; https://doi.org/10.3390/metabo14080402 - 24 Jul 2024
Viewed by 1238
Abstract
In this study, the transcriptome profiles of tissue–cultured grapevine (Vitis vinifera L. × Vitis labrusca L.: Rose Honey) seedlings inoculated with fungal endophytes Epicoccum layuense R2-21 (Epi R2-21) and Alternaria alternata XHYN2 (Alt XHYN2), were analyzed at three different time points (6 [...] Read more.
In this study, the transcriptome profiles of tissue–cultured grapevine (Vitis vinifera L. × Vitis labrusca L.: Rose Honey) seedlings inoculated with fungal endophytes Epicoccum layuense R2-21 (Epi R2-21) and Alternaria alternata XHYN2 (Alt XHYN2), were analyzed at three different time points (6 h, 6 d, and 15 d). A total of 4783 differentially expressed genes (DEGs) was found, of which 1853 (6 h), 3878 (6 d), and 4732 (15 d) were differentially expressed relative to those of the control in endophyte Epi R2-21 treatments, while a total of 5898 DEGs, of which 2726 (6 h), 4610 (6 d), and 3938 (15 d) were differentially expressed in endophyte Alt XHYN2 treatments. DEGs enriched in secondary metabolic pathways, plant–pathogen interaction, and hormone signalling were further analysed. The upregulated DEGs in the Epi R2-21 and Alt XHYN2 treatments, both enriched in the Kyoto Encyclopedia of Genes and Genomes (KEGG), were mainly involved in flavonoid biosynthesis, phenylpropanoid biosynthesis, stilbenoid, diarylheptanoid and gingerol biosynthesis, phenylalanine metabolism, and circadian rhythms–plant and plant–pathogen interactions, similar to the trend observed in our previous study conducted on the cultivar ‘Cabernet Sauvignon’ (Vitis vinifera L.). Taken together with the results obtained from the cultivar ‘Cabernet Sauvignon’, it was found that tissue-cultured seedlings of the cultivar ‘Rose Honey’ induced a stronger defence response to fungal endophyte infection than that of the cultivar ‘Cabernet Sauvignon’, and inoculation with the endophyte Alt XHYN2 triggered a stronger response than inoculation with the endophyte Epi R2-21. In addition, the protein–protein interaction (PPI) network revealed that the genes VIT_16s0100g00910, encoding CHS, and VIT_11s0065g00350, encoding CYP73A, were involved in secondary metabolism and thus mediated in the resistance mechanism of grapevine on both the cultivars. The results showed that inoculation with the endophytes Epi R2-21 and Alt XHYN2 had a great ability to induce defence responses and reprogram the gene expression profiles in different grapevine cultivars, which deepens our knowledge of the interaction between fungal endophytes and grapevine and gives hints for grape quality management in viticulture using candidate fungal endophytes. Full article
Show Figures

Figure 1

19 pages, 6865 KiB  
Article
The Interactions between Two Fungal Endophytes Epicoccum layuense R2-21 and Alternaria alternata XHYN2 and Grapevines (Vitis vinifera) with De Novo Established Symbionts under Aseptic Conditions
by Xiao-Xia Pan, Hui-Zhi Liu, Yu Li, Ping Zhou, Yun Wen, Chun-Xi Lu, You-Yong Zhu and Ming-Zhi Yang
J. Fungi 2023, 9(12), 1154; https://doi.org/10.3390/jof9121154 - 30 Nov 2023
Cited by 1 | Viewed by 1801
Abstract
In this study, we focused on grapevine–endophyte interactions and reprogrammed secondary metabolism in the host plant due to defense against the colonization of endophytes. Thus, the transcriptional responses of tissue cultured grapevine seedlings (Vitis vinifera L. cv.: Cabernet Sauvignon) to two fungal [...] Read more.
In this study, we focused on grapevine–endophyte interactions and reprogrammed secondary metabolism in the host plant due to defense against the colonization of endophytes. Thus, the transcriptional responses of tissue cultured grapevine seedlings (Vitis vinifera L. cv.: Cabernet Sauvignon) to two fungal endophytes Epicoccum layuense R2-21 (Epi R2-21) and Alternaria alternata XHYN2 (Alt XHYN2) at three different time points (6 h, 6 d, 15 d) were analyzed. As expected, a total of 5748 and 5817 differentially expressed genes (DEGs) were separately initiated in Epi R2-21 and Alt XHYN2 symbiotic tissue cultured seedlings compared to no endophyte treatment. The up-regulated DEGs at all time points in Epi R2-21- or Alt XHYN2–treated seedlings were mainly enriched in the flavonoid biosynthesis, phenylpropanoid biosynthesis, phenylalanine metabolism, stilbenoid, diarylheptanoid and gingerol biosynthesis, and circadian rhythm–plant pathways. In addition, the up-regulated DEGs at all sampling times in Alt XHYN2-treated tissue cultured seedlings were enriched in the plant–pathogen interaction pathway, but appeared in Epi R2-21 symbiotic seedlings only after 15 d of treatment. The down-regulated DEGs were not enriched in any KEGG pathways after 6 h inoculation for Epi R2-21 and Alt XHYN2 treatments, but were enriched mainly in photosynthesis–antenna proteins and plant hormone signal transduction pathways at other sampling times. At three different time points, a total of 51 DEGs (all up-regulated, 1.33–10.41-fold) were involved in secondary metabolism, and 22 DEGs (all up-regulated, 1.01–8.40-fold) were involved in defense responses in endophytic fungi symbiotic tissue cultured seedlings. The protein–protein interaction (PPI) network demonstrated that genes encoding CHS (VIT_10s0042g00920, VIT_14s0068g00920, and VIT_16s0100g00910) and the VIT_11s0065g00350 gene encoding CYP73A mediated the defense responses, and might induce more defense-associated metabolites. These results illustrated the activation of stress–associated secondary metabolism in the host grapevine during the establishment of fungi–plant endophytism. This work provides avenues for reshaping the qualities and characteristics of wine grapes utilizing specific endophytes and better understanding plant–microbe interactions. Full article
(This article belongs to the Special Issue Diversity and Secondary Metabolites of Endophytic Fungi)
Show Figures

Figure 1

Back to TopTop