Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Agilent Seahorse XFe96

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4136 KiB  
Article
A Mitochondrial Supplement Improves Function and Mitochondrial Activity in Autism: A Double-Blind Placebo-Controlled Cross-Over Trial
by Zoë Hill, Patrick J. McCarty, Richard G. Boles and Richard E. Frye
Int. J. Mol. Sci. 2025, 26(6), 2479; https://doi.org/10.3390/ijms26062479 - 10 Mar 2025
Cited by 1 | Viewed by 5273
Abstract
Autism spectrum disorder (ASD) is associated with mitochondrial dysfunction, but studies demonstrating the efficacy of treatments are scarce. We sought to determine whether a mitochondrial-targeted dietary supplement designed for children with ASD improved mitochondrial function and ASD symptomatology using a double-blind placebo-controlled cross-over [...] Read more.
Autism spectrum disorder (ASD) is associated with mitochondrial dysfunction, but studies demonstrating the efficacy of treatments are scarce. We sought to determine whether a mitochondrial-targeted dietary supplement designed for children with ASD improved mitochondrial function and ASD symptomatology using a double-blind placebo-controlled cross-over design. Sixteen children [mean age 9 years 4 months; 88% male] with non-syndromic ASD and mitochondrial enzyme abnormalities, as measured by MitoSwab (Religen, Plymouth Meeting, PA, USA), received weight-adjusted SpectrumNeeds® (NeuroNeeds, Old Lyme, CT, USA) and QNeeds® (NeuroNeeds, Old Lyme, CT, USA) and placebos matched on taste, texture and appearance during two separate 12-week blocks. Which product was received first was randomized. The treatment significantly normalized citrate synthase and complex IV activity as measured by the MitoSwab. Mitochondrial respiration of peripheral blood mononuclear cell respiration, as measured by the Seahorse XFe96 (Agilent, Santa Clara, CA, USA) with the mitochondrial oxidative stress test, became more resilient to oxidative stress after the treatment, particularly in children with poor neurodevelopment. The mitochondrial supplement demonstrated significant improvement in standardized parent-rated scales in neurodevelopment, social withdrawal, and hyperactivity with large effect sizes (Cohen’s d’ = 0.77–1.25), while changes measured by the clinical and psychometric instruments were not significantly different. Adverse effects were minimal. This small study on children with ASD and mitochondrial abnormalities demonstrates that a simple, well-tolerated mitochondrial-targeted dietary supplement can improve mitochondrial physiology and ASD symptoms. Further larger controlled studies need to verify and extend these findings. These findings are significant as children with ASD have few other effective treatments. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

22 pages, 17322 KiB  
Article
An Optimized Workflow for the Analysis of Metabolic Fluxes in Cancer Spheroids Using Seahorse Technology
by Gloria Campioni, Valentina Pasquale, Stefano Busti, Giacomo Ducci, Elena Sacco and Marco Vanoni
Cells 2022, 11(5), 866; https://doi.org/10.3390/cells11050866 - 2 Mar 2022
Cited by 20 | Viewed by 11204
Abstract
Three-dimensional cancer models, such as spheroids, are increasingly being used to study cancer metabolism because they can better recapitulate the molecular and physiological aspects of the tumor architecture than conventional monolayer cultures. Although Agilent Seahorse XFe96 (Agilent Technologies, Santa Clara, CA, United States) [...] Read more.
Three-dimensional cancer models, such as spheroids, are increasingly being used to study cancer metabolism because they can better recapitulate the molecular and physiological aspects of the tumor architecture than conventional monolayer cultures. Although Agilent Seahorse XFe96 (Agilent Technologies, Santa Clara, CA, United States) is a valuable technology for studying metabolic alterations occurring in cancer cells, its application to three-dimensional cultures is still poorly optimized. We present a reliable and reproducible workflow for the Seahorse metabolic analysis of three-dimensional cultures. An optimized protocol enables the formation of spheroids highly regular in shape and homogenous in size, reducing variability in metabolic parameters among the experimental replicates, both under basal and drug treatment conditions. High-resolution imaging allows the calculation of the number of viable cells in each spheroid, the normalization of metabolic parameters on a per-cell basis, and grouping of the spheroids as a function of their size. Multivariate statistical tests on metabolic parameters determined by the Mito Stress test on two breast cancer cell lines show that metabolic differences among the studied spheroids are mostly related to the cell line rather than to the size of the spheroid. The optimized workflow allows high-resolution metabolic characterization of three-dimensional cultures, their comparison with monolayer cultures, and may aid in the design and interpretation of (multi)drug protocols. Full article
(This article belongs to the Special Issue 10th Anniversary of Cells—Advances in Cell Techniques)
Show Figures

Figure 1

32 pages, 5582 KiB  
Article
Mycobacterium tuberculosis H2S Functions as a Sink to Modulate Central Metabolism, Bioenergetics, and Drug Susceptibility
by Tafara T. R. Kunota, Md. Aejazur Rahman, Barry E. Truebody, Jared S. Mackenzie, Vikram Saini, Dirk A. Lamprecht, John H. Adamson, Ritesh R. Sevalkar, Jack R. Lancaster, Michael Berney, Joel N. Glasgow and Adrie J. C. Steyn
Antioxidants 2021, 10(8), 1285; https://doi.org/10.3390/antiox10081285 - 13 Aug 2021
Cited by 17 | Viewed by 5197
Abstract
H2S is a potent gasotransmitter in eukaryotes and bacteria. Host-derived H2S has been shown to profoundly alter M. tuberculosis (Mtb) energy metabolism and growth. However, compelling evidence for endogenous production of H2S and its role [...] Read more.
H2S is a potent gasotransmitter in eukaryotes and bacteria. Host-derived H2S has been shown to profoundly alter M. tuberculosis (Mtb) energy metabolism and growth. However, compelling evidence for endogenous production of H2S and its role in Mtb physiology is lacking. We show that multidrug-resistant and drug-susceptible clinical Mtb strains produce H2S, whereas H2S production in non-pathogenic M. smegmatis is barely detectable. We identified Rv3684 (Cds1) as an H2S-producing enzyme in Mtb and show that cds1 disruption reduces, but does not eliminate, H2S production, suggesting the involvement of multiple genes in H2S production. We identified endogenous H2S to be an effector molecule that maintains bioenergetic homeostasis by stimulating respiration primarily via cytochrome bd. Importantly, H2S plays a key role in central metabolism by modulating the balance between oxidative phosphorylation and glycolysis, and it functions as a sink to recycle sulfur atoms back to cysteine to maintain sulfur homeostasis. Lastly, Mtb-generated H2S regulates redox homeostasis and susceptibility to anti-TB drugs clofazimine and rifampicin. These findings reveal previously unknown facets of Mtb physiology and have implications for routine laboratory culturing, understanding drug susceptibility, and improved diagnostics. Full article
(This article belongs to the Special Issue Hydrogen Sulfide in Biology)
Show Figures

Figure 1

Back to TopTop