Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = Aedini

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1598 KiB  
Article
Impact of Thermal Variation on Egg Hatching and the Life Cycle of Aedes (Protomacleaya) terrens (Diptera: Culicidae) in a Laboratory Environment
by Rayane Dias, Manuella Pereira Cerqueira Leite, Guilherme Sanches Corrêa-do-Nascimento, Gabriel Silva Santos, Cecilia Ferreira de Mello, Nathália Menezes de Almeida and Jeronimo Alencar
Life 2025, 15(7), 1038; https://doi.org/10.3390/life15071038 - 30 Jun 2025
Viewed by 405
Abstract
Evaluating the development process of mosquito species under the influence of temperature is essential for understanding their ecology and geographical distribution, as well as assessing their potential as vectors of pathogens. Aedes (Protomacleaya) terrens, a species recognized for its susceptibility [...] Read more.
Evaluating the development process of mosquito species under the influence of temperature is essential for understanding their ecology and geographical distribution, as well as assessing their potential as vectors of pathogens. Aedes (Protomacleaya) terrens, a species recognized for its susceptibility and competence in transmitting the chikungunya virus, serves as a relevant model for research in this context. This study aimed to analyze the influence of temperature on egg hatching and the development cycle of this species to expand knowledge on its biology and implications for public health. During the experiment, 800 eggs were used, collected through 10 ovitraps in a forest remnant located in Uruaçu, Goiás, Brazil. The total number of eggs was divided into four groups, exposed to constant temperatures of 15 ± 2 °C, 20 ± 2 °C, 25 ± 2 °C, and 30 ± 2 °C. After hatching, first-instar larvae were individually separated and monitored daily under controlled conditions until adult emergence. The highest hatching rate occurred at 25 °C, showing an optimal point around 27 °C. Throughout development, temperature significantly reduced the duration of each stage, with the fastest complete cycle at 30 °C, a difference of approximately 10–12 days when compared to 20 °C and approximately 47 days when compared to 25 °C. These results offer valuable insights into the temperature sensitivity of Ae. terrens across its developmental stages, suggesting that each stage has its own optimal temperature. Thus, small variations in responses to environmental conditions and differentiation between sexes may become more pronounced throughout development. In this sense, temperature can affect not only the development and survival of dipterans but also the capacity for virus transmission, as the pathogen influences the reproduction rate and longevity of the vectors. Full article
(This article belongs to the Section Diversity and Ecology)
Show Figures

Figure 1

16 pages, 2444 KiB  
Article
Shallow Whole-Genome Sequencing of Aedes japonicus and Aedes koreicus from Italy and an Updated Picture of Their Evolution Based on Mitogenomics and Barcoding
by Nicola Zadra, Alessia Tatti, Andrea Silverj, Riccardo Piccinno, Julien Devilliers, Clifton Lewis, Daniele Arnoldi, Fabrizio Montarsi, Paula Escuer, Giuseppe Fusco, Veronica De Sanctis, Roberto Feuda, Alejandro Sánchez-Gracia, Annapaola Rizzoli and Omar Rota-Stabelli
Insects 2023, 14(12), 904; https://doi.org/10.3390/insects14120904 - 23 Nov 2023
Cited by 1 | Viewed by 3539
Abstract
Aedes japonicus and Aedes koreicus are two invasive mosquitoes native to East Asia that are quickly establishing in temperate regions of Europe. Both species are vectors of arboviruses, but we currently lack a clear understanding of their evolution. Here, we present new short-read, [...] Read more.
Aedes japonicus and Aedes koreicus are two invasive mosquitoes native to East Asia that are quickly establishing in temperate regions of Europe. Both species are vectors of arboviruses, but we currently lack a clear understanding of their evolution. Here, we present new short-read, shallow genome sequencing of A. japonicus and A. koreicus individuals from northern Italy, which we used for downstream phylogenetic and barcode analyses. We explored associated microbial DNA and found high occurrences of Delftia bacteria in both samples, but neither Asaia nor Wolbachia. We then assembled complete mitogenomes and used these data to infer divergence times estimating the split of A. japonicus from A. koreicus in the Oligocene, which was more recent than that previously reported using mitochondrial markers. We recover a younger age for most other nodes within Aedini and other Culicidae. COI barcoding and phylogenetic analyses indicate that A. japonicus yaeyamensis, A. japonicus amamiensis, and the two A. koreicus sampled from Europe should be considered as separate species within a monophyletic species complex. Our studies further clarify the evolution of A. japonicus and A. koreicus, and indicate the need to obtain whole-genome data from putative species in order to disentangle their complex patterns of evolution. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

30 pages, 9852 KiB  
Article
Morphological and Molecular Characterization Using Genitalia and CoxI Barcode Sequence Analysis of Afrotropical Mosquitoes with Arbovirus Vector Potential
by Eddyson Montalvo-Sabino, Ana Paula Abílio, Milehna Mara Guarido, Vera Valadas, Maria Teresa Novo, Ayubo Kampango, Carla Alexandra Sousa, José Fafetine, Marietjie Venter, Peter N. Thompson, Leo Braack, Anthony John Cornel, Ricardo Parreira and António Paulo Gouveia de Almeida
Diversity 2022, 14(11), 940; https://doi.org/10.3390/d14110940 - 2 Nov 2022
Cited by 4 | Viewed by 4535
Abstract
Potential arboviral Afrotropical mosquito vectors are underrepresented in public databases of CoxI barcode sequences. Furthermore, available CoxI sequences for many species are often not associated with voucher specimens to match the corresponding fine morphological characterization of specimens. Hence, this study focused on the [...] Read more.
Potential arboviral Afrotropical mosquito vectors are underrepresented in public databases of CoxI barcode sequences. Furthermore, available CoxI sequences for many species are often not associated with voucher specimens to match the corresponding fine morphological characterization of specimens. Hence, this study focused on the characterization of Culicine mosquitoes from South Africa, Mozambique, and Angola and their classification using a complementary approach including a morphological analysis of specimens’ genitalia and phylogenetic study based on the analysis of CoxI barcode sequences using maximum likelihood and Bayesian phylogenetic inference methods, alongside Median-Joining Network and PCOORD analyses. Overall, 800 mosquitoes (652 males and 148 females) from 67 species, were analyzed. Genitalia from 663 specimens allowed the identification of 55 species of 10 genera. A total of 247 CoxI partial gene sequences corresponding to 65 species were obtained, 11 of which (Aedes capensis, Ae. mucidus, Culex andersoni, Cx. telesilla, Cx. inconspicuosus, Eretmapodites subsimplicipes, Er. quinquevittatus, Ficalbia uniformis, Mimomyia hispida, Uranotaenia alboabdominalis, and Ur. mashonaensis) are, to the best of our knowledge, provided here for the first time. The presence of Cx. pipiens ecotypes molestus and pipiens and their hybrids, as well as Cx. infula, is newly reported in the Afrotropical region. The rates of correct sequence identification using BOLD and BLASTn (≥95% identity) were 64% and 53%, respectively. Phylogenetic analysis revealed that, except for subgenus Eumelanomyia of Culex, there was support for tribes Aedini, Culicini, Ficalbiini, and Mansoniini. A divergence >2% was observed in conspecific sequences, e.g., Aedeomyia africana, Ae. cumminsii, Ae. unilineatus, Ae. metallicus, Ae. furcifer, Ae. caballus, and Mansonia uniformis. Conversely, sequences from groups and species complexes, namely, Ae. simpsoni, Ae. mcintoshi, Cx. bitaeniorhynchus, Cx. simpsoni, and Cx. pipiens were insufficiently separated. A contribution has been made to the barcode library of Afrotropical mosquitoes with associated genitalia morphological identifications. Full article
(This article belongs to the Special Issue Diversity, Distribution and Phylogeny of Vector Insects)
Show Figures

Graphical abstract

64 pages, 16941 KiB  
Article
Characterisation of the RNA Virome of Nine Ochlerotatus Species in Finland
by Phuoc T. Truong Nguyen, C. Lorna Culverwell, Maija T. Suvanto, Essi M. Korhonen, Ruut Uusitalo, Olli Vapalahti, Teemu Smura and Eili Huhtamo
Viruses 2022, 14(7), 1489; https://doi.org/10.3390/v14071489 - 7 Jul 2022
Cited by 22 | Viewed by 5220
Abstract
RNA viromes of nine commonly encountered Ochlerotatus mosquito species collected around Finland in 2015 and 2017 were studied using next-generation sequencing. Mosquito homogenates were sequenced from 91 pools comprising 16–60 morphologically identified adult females of Oc. cantans, Oc. caspius, Oc. communis [...] Read more.
RNA viromes of nine commonly encountered Ochlerotatus mosquito species collected around Finland in 2015 and 2017 were studied using next-generation sequencing. Mosquito homogenates were sequenced from 91 pools comprising 16–60 morphologically identified adult females of Oc. cantans, Oc. caspius, Oc. communis, Oc. diantaeus, Oc. excrucians, Oc. hexodontus, Oc. intrudens, Oc. pullatus and Oc. punctor/punctodes. In total 514 viral Reverse dependent RNA polymerase (RdRp) sequences of 159 virus species were recovered, belonging to 25 families or equivalent rank, as follows: Aliusviridae, Aspiviridae, Botybirnavirus, Chrysoviridae, Chuviridae, Endornaviridae, Flaviviridae, Iflaviridae, Negevirus, Partitiviridae, Permutotetraviridae, Phasmaviridae, Phenuiviridae, Picornaviridae, Qinviridae, Quenyavirus, Rhabdoviridae, Sedoreoviridae, Solemoviridae, Spinareoviridae, Togaviridae, Totiviridae, Virgaviridae, Xinmoviridae and Yueviridae. Of these, 147 are tentatively novel viruses. One sequence of Sindbis virus, which causes Pogosta disease in humans, was detected from Oc. communis from Pohjois-Karjala. This study greatly increases the number of mosquito-associated viruses known from Finland and presents the northern-most mosquito-associated viruses in Europe to date. Full article
(This article belongs to the Special Issue Diversity of RNA Viruses in Arthropod)
Show Figures

Figure 1

20 pages, 2353 KiB  
Article
First Description of the Mitogenome and Phylogeny of Culicinae Species from the Amazon Region
by Bruna Laís Sena do Nascimento, Fábio Silva da Silva, Joaquim Pinto Nunes-Neto, Daniele Barbosa de Almeida Medeiros, Ana Cecília Ribeiro Cruz, Sandro Patroca da Silva, Lucas Henrique da Silva e Silva, Hamilton Antônio de Oliveira Monteiro, Daniel Damous Dias, Durval Bertram Rodrigues Vieira, José Wilson Rosa, Roberto Carlos Feitosa Brandão, Jannifer Oliveira Chiang, Livia Carício Martins and Pedro Fernando da Costa Vasconcelos
Genes 2021, 12(12), 1983; https://doi.org/10.3390/genes12121983 - 14 Dec 2021
Cited by 16 | Viewed by 3869
Abstract
The Culicidae family is distributed worldwide and comprises about 3587 species subdivided into the subfamilies Anophelinae and Culicinae. This is the first description of complete mitochondrial DNA sequences from Aedes fluviatilis, Aedeomyia squamipennis, Coquillettidia nigricans, Psorophora albipes, and Psorophora [...] Read more.
The Culicidae family is distributed worldwide and comprises about 3587 species subdivided into the subfamilies Anophelinae and Culicinae. This is the first description of complete mitochondrial DNA sequences from Aedes fluviatilis, Aedeomyia squamipennis, Coquillettidia nigricans, Psorophora albipes, and Psorophora ferox. The mitogenomes showed an average length of 15,046 pb and 78.02% AT content, comprising 37 functional subunits (13 protein coding genes, 22 tRNAs, and two rRNAs). The most common start codons were ATT/ATG, and TAA was the stop codon for all PCGs. The tRNAs had the typical leaf clover structure, except tRNASer1. Phylogeny was inferred by analyzing the 13 PCGs concatenated nucleotide sequences of 48 mitogenomes. Maximum likelihood and Bayesian inference analysis placed Ps. albipes and Ps. ferox in the Janthinosoma group, like the accepted classification of Psorophora genus. Ae. fluviatilis was placed in the Aedini tribe, but was revealed to be more related to the Haemagogus genus, a result that may have been hampered by the poor sampling of Aedes sequences. Cq. nigricans clustered with Cq. chrysonotum, both related to Mansonia. Ae. squamipennis was placed as the most external lineage of the Culicinae subfamily. The yielded topology supports the concept of monophyly of all groups and ratifies the current taxonomic classification. Full article
(This article belongs to the Special Issue Evolutionary Genetics and Phylogenetics of Mosquito Species)
Show Figures

Figure 1

14 pages, 272 KiB  
Article
The Taxonomic History of Ochlerotatus Lynch Arribálzaga, 1891 (Diptera: Culicidae)
by Lílian Ferreira de Freitas and Lyric C. Bartholomay
Insects 2021, 12(5), 452; https://doi.org/10.3390/insects12050452 - 14 May 2021
Cited by 5 | Viewed by 2406
Abstract
A review of all taxonomic actions within the subgenus Ochlerotatus Lynch Arribálzaga, 1891 (Diptera: Culicidae) sensu Reinert et al. (2008) is provided. In particular, the complex historical taxonomic treatment of the type species of this group is dissected and explained in detail. Additionally, [...] Read more.
A review of all taxonomic actions within the subgenus Ochlerotatus Lynch Arribálzaga, 1891 (Diptera: Culicidae) sensu Reinert et al. (2008) is provided. In particular, the complex historical taxonomic treatment of the type species of this group is dissected and explained in detail. Additionally, current challenges with the definition of the subgenus and its constituents are discussed, as are the requisite steps for a successful revision of the taxon. Going forward, we conclude that a taxonomic revision of the species should include a neotype designation for Ochlerotatus scapularis (Rondani, 1848) from topotypical material. Additionally, we provide a review of the characters and taxa that need to be re-evaluated and well-described in order to stabilize the taxonomy of the subgenus. This effort represents a key step towards a stable nomenclature of the Tribe Aedini. Full article
17 pages, 5829 KiB  
Article
Chronological Incongruences between Mitochondrial and Nuclear Phylogenies of Aedes Mosquitoes
by Nicola Zadra, Annapaola Rizzoli and Omar Rota-Stabelli
Life 2021, 11(3), 181; https://doi.org/10.3390/life11030181 - 25 Feb 2021
Cited by 17 | Viewed by 4290
Abstract
One-third of all mosquitoes belong to the Aedini, a tribe comprising common vectors of viral zoonoses such as Aedes aegypti and Aedes albopictus. To improve our understanding of their evolution, we present an updated multigene estimate of Aedini phylogeny and divergence, focusing [...] Read more.
One-third of all mosquitoes belong to the Aedini, a tribe comprising common vectors of viral zoonoses such as Aedes aegypti and Aedes albopictus. To improve our understanding of their evolution, we present an updated multigene estimate of Aedini phylogeny and divergence, focusing on the disentanglement between nuclear and mitochondrial phylogenetic signals. We first show that there are some phylogenetic discrepancies between nuclear and mitochondrial markers which may be caused by wrong taxa assignment in samples collections or by some stochastic effect due to small gene samples. We indeed show that the concatenated dataset is model and framework dependent, indicating a general paucity of signal. Our Bayesian calibrated divergence estimates point toward a mosquito radiation in the mid-Jurassic and an Aedes radiation from the mid-Cretaceous on. We observe, however a strong chronological incongruence between mitochondrial and nuclear data, the latter providing divergence times within the Aedini significantly younger than the former. We show that this incongruence is consistent over different datasets and taxon sampling and that may be explained by either peculiar evolutionary event such as different levels of saturation in certain lineages or a past history of hybridization throughout the genus. Overall, our updated picture of Aedini phylogeny, reveal a strong nuclear-mitochondrial incongruence which may be of help in setting the research agenda for future phylogenomic studies of Aedini mosquitoes. Full article
(This article belongs to the Special Issue Molecular Phylogenetics and Mitochondrial Evolution)
Show Figures

Figure 1

8 pages, 714 KiB  
Article
The Prediapause Stage of Aedes japonicus japonicus and the Evolution of Embryonic Diapause in Aedini
by Jake Bova, John Soghigian and Sally Paulson
Insects 2019, 10(8), 222; https://doi.org/10.3390/insects10080222 - 25 Jul 2019
Cited by 10 | Viewed by 4065
Abstract
The genus Aedes is well known for its desiccation-resistant eggs, which frequently serve as an overwintering mechanism through diapause. Despite this, relatively little is known about the diapause and overwintering biology of most Aedes species including Aedes japonicus japonicus, an invasive mosquito [...] Read more.
The genus Aedes is well known for its desiccation-resistant eggs, which frequently serve as an overwintering mechanism through diapause. Despite this, relatively little is known about the diapause and overwintering biology of most Aedes species including Aedes japonicus japonicus, an invasive mosquito in the United States. The importance of this mosquito in disease systems like La Crosse virus remain uncertain. Embryonic diapause is used by Ae. j. japonicus to survive temperate winters, and the persistence of this species in the Appalachian region is a result of overwintering, which has important implications for the transmission of this virus to humans. The objective of this study was to identify the prediapause stage, or the stage sensitive to environmental cues needed to induce diapause in this mosquito. By exposing each Ae. j. japonicus life stage independently to short-day photoperiods, we determined that the adult maternal life stage is the prediapause stage. Using the most recent phylogeny and prior literature on the prediapause stages in the genus Aedes, we were able to infer the evolutionary history of the prediapause stages of Aedes mosquitoes that overwinter or aestivate as eggs. This initial ancestral state reconstruction allowed us to hypothesize that Aedini mosquitoes that undergo obligate diapause may have evolved from those utilizing the embryonic prediapause stage, and that the ancestral prediapause state of Aedini appears to be maternally controlled. Full article
(This article belongs to the Special Issue Vector Biology and Ecology)
Show Figures

Figure 1

Back to TopTop