Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Acinetobacter KU011TH

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 10045 KiB  
Article
Long-Term Application of a Synbiotic Chitosan and Acinetobacter KU011TH Mixture on the Growth Performance, Health Status, and Disease Resistance of Hybrid Catfish (Clarias gariepinus × C. macrocephalus) during Winter
by Pisey Say, Sukkrit Nimikul, Anurak Bunnoy, Uthairat Na-Nakorn and Prapansak Srisapoome
Microorganisms 2023, 11(7), 1807; https://doi.org/10.3390/microorganisms11071807 - 14 Jul 2023
Cited by 7 | Viewed by 2152
Abstract
The effects of potential synbiotic chitosan and Acinetobacter KU011TH mixture on growth performance, immune response, and A. hydrophila resistance were investigated for the first time. The control group was fed a basal diet (A), and group B was given the formula B diet [...] Read more.
The effects of potential synbiotic chitosan and Acinetobacter KU011TH mixture on growth performance, immune response, and A. hydrophila resistance were investigated for the first time. The control group was fed a basal diet (A), and group B was given the formula B diet that was supplemented with chitosan at 20 mL/kg diet via top dressing. The other synbiotic groups, C, D, and E, were top-dressed with the target probiotics at 1 × 108, 1 × 109, and 1 × 1010 CFU/kg diet, respectively, and coated with the same concentration of chitosan. Fish were continuously fed the five different feeds for 16 weeks during winter. At the end of the trial, the growth parameters of the test groups did not significantly differ from those of the control (p > 0.05). All the symbiotic-chitosan treatments significantly increased various hematological and serum immune parameters. Moreover, the expression levels of immune-related genes were strongly elevated in the head kidney and spleen, whereas upregulated expression was observed in the liver and whole blood (p < 0.05). Survival analysis indicated that fish in groups B and C showed significantly higher survival (84.33 ± 2.21 and 79.50 ± 6.34%) than those in groups A, D and E (55.33 ± 8.82%–74.00 ± 6.50) (p < 0.05) after injection with A. hydrophila for 14 days. Full article
(This article belongs to the Special Issue Beneficial Microorganisms in Aquaculture)
Show Figures

Figure 1

30 pages, 9943 KiB  
Article
Probiotic Effects of a Novel Strain, Acinetobacter KU011TH, on the Growth Performance, Immune Responses, and Resistance against Aeromonas hydrophila of Bighead Catfish (Clarias macrocephalus Günther, 1864)
by Anurak Bunnoy, Uthairat Na-Nakorn and Prapansak Srisapoome
Microorganisms 2019, 7(12), 613; https://doi.org/10.3390/microorganisms7120613 - 25 Nov 2019
Cited by 47 | Viewed by 6095
Abstract
In the present study, the novel probiotic strain Acinetobacter KU011TH with an evident lack of pathogenicity in catfish was experimented. Three practical administration routes, namely, feed additive (FD), water-soluble additive (SOL), and a combination route (FD+SOL), were applied in two sizes of catfish. [...] Read more.
In the present study, the novel probiotic strain Acinetobacter KU011TH with an evident lack of pathogenicity in catfish was experimented. Three practical administration routes, namely, feed additive (FD), water-soluble additive (SOL), and a combination route (FD+SOL), were applied in two sizes of catfish. After 120 days of FD+SOL administration, catfish fingerlings (15 g) exhibited a significant improvement in all tested growth performance parameters. For 15- and 30-day applications at the juvenile stage (150 g), phagocytic activity, phagocytic index, lysozyme activity, respiratory burst activity, alternative complement pathway, and bactericidal activity were significantly increased. Furthermore, probiotic-administered bighead catfish exhibited an upregulated expression of several immune-related genes in tested organs. Significant colonization by Acinetobacter KU011TH in rearing water and on skin and gills was observed among experimental groups. Histological analysis clearly indicated enhanced physical characteristics of skin mucosal immunity in the treated groups. No histopathological changes in the gills, skin, intestine or liver were observed among the fish groups. Interestingly, after challenge with Aeromonas hydrophila, the survival rates of the treated groups were significantly higher than those of the controls. In conclusion, the novel probiont Acinetobacter KU011TH provides a potent strategy for improvement in growth and disease resistance, which is an important steppingstone for sustaining catfish aquaculture. Full article
Show Figures

Figure 1

24 pages, 5103 KiB  
Article
Acinetobacter Strain KUO11TH, a Unique Organism Related to Acinetobacter pittii and Isolated from the Skin Mucus of Healthy Bighead Catfish and Its Efficacy Against Several Fish Pathogens
by Anurak Bunnoy, Uthairat Na-Nakorn, Pattanapon Kayansamruaj and Prapansak Srisapoome
Microorganisms 2019, 7(11), 549; https://doi.org/10.3390/microorganisms7110549 - 10 Nov 2019
Cited by 26 | Viewed by 7087
Abstract
The bacterial strain KU011TH was isolated from the skin mucus of healthy bighead catfish. The strain is a Gram-negative coccobacillus that is nonmotile, aerobic, catalase positive, oxidase negative, and nonhemolytic. Sequence analyses of the housekeeping genes 16S rRNA, gyrB and rpoB indicate [...] Read more.
The bacterial strain KU011TH was isolated from the skin mucus of healthy bighead catfish. The strain is a Gram-negative coccobacillus that is nonmotile, aerobic, catalase positive, oxidase negative, and nonhemolytic. Sequence analyses of the housekeeping genes 16S rRNA, gyrB and rpoB indicate that this strain is a new member of the Acb complex of the genus Acinetobacter and is closely related to Acinetobacter pittii and Acinetobacter lactucae. In addition, the genome relatedness-associated ANIb (<95–96%) and in silico DDH (<70%) values clearly supported the new member of the genus Acinetobacter and the Acb complex. The genome of the strain KU011TH was approximately 3.79 Mbp in size, comprising 3619 predicted genes, and the DNA G+C content was 38.56 mol%. The major cellular fatty acids were C18:1ω9c, C16:0, C16:1, C20:2, C18:2ω6c and C18:1ω9t. The whole-genome sequences and phenotypic, phylogenetic, and chemotaxonomic data clearly support the classification of the strain KU011TH as a new member in the genus Acinetobacter which is closest to A. pittii. Additionally, the new bacterial strain exhibited strong activity against a broad range of freshwater fish pathogens in vitro. Full article
(This article belongs to the Section Systems Microbiology)
Show Figures

Figure 1

Back to TopTop