Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = AWPA E7

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3398 KiB  
Article
Radiata Pine Wood Treated with Copper Nanoparticles: Leaching Analysis and Fungal Degradation
by María Graciela Aguayo, Claudia Oviedo, Laura Reyes, José Navarrete, Liset Gómez, Hugo Torres, Gonzalo Gaviño and Ejnar Trollund
Forests 2021, 12(11), 1606; https://doi.org/10.3390/f12111606 - 21 Nov 2021
Cited by 16 | Viewed by 3794
Abstract
Radiata pine is the main wood species used in the Chilean construction industry, but it must be protected due to its low natural durability. Chemical protection of wood by impregnation allows for a more efficient utilization of the forest resources by extending its [...] Read more.
Radiata pine is the main wood species used in the Chilean construction industry, but it must be protected due to its low natural durability. Chemical protection of wood by impregnation allows for a more efficient utilization of the forest resources by extending its useful life. The use of nanoparticles in wood protection has garnered great interest during the last decade, due to their unique physicochemical properties, different from those of larger sized materials. In this research, the impregnation of radiata pine wood with copper nanoparticles (CuNP) was studied in terms of retention, penetration, leaching, and its protective effect against wood rot fungi growth according to EN 113, AWPA A3-91, A9-18, and E11-16. Penetration analysis confirmed a uniform distribution across the wood, with total penetration in the impregnated samples with the highest concentration solution of CuNP. Retention values of the impregnated wood increased proportionally with the concentration of nanoparticles evaluated by EDXRF. Leaching analysis showed copper removal during the first hours of the test, with a constant leaching rate up to 144 h. Impregnated wood mass loss (ML) due to exposure to Gloeophyllum trabeum and Rhodonia placenta fungi were significantly reduced regardless of the CuNP concentration or fungi tested, with an ML smaller than 5% and smaller than 14% for leached samples. Full article
(This article belongs to the Special Issue Evaluation and Protection of Wood and Wood Products)
Show Figures

Graphical abstract

14 pages, 4177 KiB  
Article
Evaluation of Heartwood Extracts Combined with Linseed Oil as Wood Preservatives in Field Tests in Southern Mississippi, USA
by Babar Hassan, Mark E. Mankowski and Grant T. Kirker
Insects 2021, 12(9), 803; https://doi.org/10.3390/insects12090803 - 8 Sep 2021
Cited by 7 | Viewed by 3057
Abstract
Heartwood extracts of naturally durable wood species are often evaluated as alternatives to chemical wood preservatives, but field data from long-term performance testing are lacking. The current study evaluated the long-term (five-year) performance of two non-durable wood species treated with heartwood extracts of [...] Read more.
Heartwood extracts of naturally durable wood species are often evaluated as alternatives to chemical wood preservatives, but field data from long-term performance testing are lacking. The current study evaluated the long-term (five-year) performance of two non-durable wood species treated with heartwood extracts of either Tectona grandis, Dalbergia sissoo, Cedrus deodara, or Pinus roxburghii alone or combined with linseed oil. Stakes (45.7 × 1.9 × 1.9 cm) and blocks (12.5 × 3.75 × 2.5 cm) cut from the sapwood of cottonwood and southern pine were vacuum-pressure impregnated with the individual heartwood species extract, linseed oil, or a mixture of each individual wood extract and linseed oil. For comparison, solid heartwood stakes and blocks of the wood species used to obtain extracts were also included in the tests. All samples were exposed for five years to decay and termites at a test site in southern Mississippi using ground contact (AWPA E7) and ground proximity (AWPA E26) tests. Results showed that extract-oil mixtures imparted higher termite and decay resistance in cottonwood and southern pine than linseed oil only or the individual heartwood species extract in both tests. However, these treatments were as not effective as to commercially used wood preservatives, copper naphthenate (CuN) or disodium octaborate tetrahydrate (DOT) in either test. Moreover, solid heartwood P. roxburghii stakes were completely decayed and attacked by termites after five years in the ground contact test. In contrast, C. deodara stakes were slightly attacked by termites and moderately attacked by decay fungi. However, T. grandis and D. sissoo stakes showed slight to superficial attack by termites and decay fungi in ground contact test. In contrast, T. grandis and D. sissoo blocks showed slight decay fungi attack in above-ground tests. However, termites did not attack T. grandis, D. sissoo, and C. deodara blocks. However, decay fungi moderately attacked C. deodara blocks, and P. roxburghii blocks were severely attacked by decay fungi and termites in the above-ground test. Full article
Show Figures

Figure 1

10 pages, 2944 KiB  
Article
Resistance to Growth of Molds for Wood Modified with Hydrophobic Hybrid Silica Gel Containing Copper Amine Complexes
by Shaokun Hao, Chuanshuang Hu, Xiuyi Lin, Jin Gu, Hong Yun and Weiwei Zhang
Materials 2021, 14(3), 577; https://doi.org/10.3390/ma14030577 - 26 Jan 2021
Cited by 6 | Viewed by 2450
Abstract
Complexation copper with amine provides an effective strategy for fixation copper in wood, while hydrophobic modification improves the dimensional stability of wood. Thus, a combination of complexation and hydrophobization is expected to enhance the efficiency of copper-based biocides. In this study, hydrophobic hybrid [...] Read more.
Complexation copper with amine provides an effective strategy for fixation copper in wood, while hydrophobic modification improves the dimensional stability of wood. Thus, a combination of complexation and hydrophobization is expected to enhance the efficiency of copper-based biocides. In this study, hydrophobic hybrid silica gel containing copper amine complexes (MACu) was prepared through an in situ sol-gel process in wood using methyltriethoxysilane (MTES), 3-amino-propyltriethoxysilane (APTES), and copper chloride. The resistance to growth of molds for MACu modified wood (Populus tomentosa) was measured according to ASTM D3273-16. A leaching resistance test was carried out in accordance with AWPA E11-16. The results showed that only Aspergillus niger covered the surface of untreated wood blocks and no mold grew on the MACu surface even after the leaching test. MACu xerogel and MACu wood were further characterized by SEM-EDS, FTIR, and XPS. A possible schematic diagram of the reaction mechanism was proposed to explain the high-efficiency anti-mold performance of MACu wood. Full article
Show Figures

Graphical abstract

10 pages, 1070 KiB  
Article
Preferences of Coptotermes formosanus Shiraki and Coptotermes gestroi (Wasmann) (Blattodea: Rhinotermitidae) among Three Commercial Wood Species
by Nirmala K. Hapukotuwa and J. Kenneth Grace
Insects 2011, 2(4), 499-508; https://doi.org/10.3390/insects2040499 - 25 Nov 2011
Cited by 16 | Viewed by 7472
Abstract
The Formosan subterranean termite, Coptotermes formosanus Shiraki, and the Asian subterranean termite, Coptotermes gestroi (Wasmann), are both pests of wood in service in Hawaii and Florida. We conducted a laboratory study using method modified from those described in standard E1-09 of the American [...] Read more.
The Formosan subterranean termite, Coptotermes formosanus Shiraki, and the Asian subterranean termite, Coptotermes gestroi (Wasmann), are both pests of wood in service in Hawaii and Florida. We conducted a laboratory study using method modified from those described in standard E1-09 of the American Wood Protection Association (AWPA 2009) to assess the termite resistance of three commercially available wood species used in regions of the USA where both termite species occur: Douglas fir, Pseudotsuga menziessii, southern yellow pine, Pinus spp. and redwood, Sequoia sempervirens. A multiple-choice (three-choice) assay was used for four weeks (28 days) in order to simulate field conditions of food choice and assess termite feeding preferences under 28 °C and 72–80% RH. 400 termites (360 workers: 40 soldiers) were released into each test jar. Five replicates and two controls of each wood species were used with each termite species. Termite mortality was recorded at the end of the test; and wood wafers were oven-dried and weighed before and after termite exposure to determine the mass loss due to termite feeding, and rated visually on a 0 (failure) to 10 (sound) scale. There were significant differences in mean mass loss values among the three wood species and between two termite species. The mean mass loss value for redwood was significantly lower than Douglas fir and southern yellow pine with both termite species. However, C. formosanus showed increased feeding on Douglas fir and southern yellow pine compared to C. gestroi. Full article
Show Figures

11 pages, 288 KiB  
Article
Comparative Study of the Resistance of Six Hawaii-Grown Bamboo Species to Attack by the Subterranean Termites Coptotermes formosanus Shiraki and Coptotermes gestroi (Wasmann) (Blattodea: Rhinotermitidae)
by Nirmala K. Hapukotuwa and J. Kenneth Grace
Insects 2011, 2(4), 475-485; https://doi.org/10.3390/insects2040475 - 3 Nov 2011
Cited by 8 | Viewed by 7437
Abstract
Bamboo is widely grown and utilized as a construction material around the world, particularly in the tropics. At present, there are about 70 bamboo species and varieties recorded from Hawaii. The objective of our study was to determine the relative resistance of six [...] Read more.
Bamboo is widely grown and utilized as a construction material around the world, particularly in the tropics. At present, there are about 70 bamboo species and varieties recorded from Hawaii. The objective of our study was to determine the relative resistance of six Hawaii-grown bamboo species to attack by Coptotermes formosanus Shiraki and Coptotermes gestroi (Wasmann). Four-week laboratory feeding trials were performed as described in standard E1-09 of the American Wood Protection Association (AWPA 2009). Samples of each of the six bamboo species were individually exposed to 200 termites (with 10% soldiers); and termite mortality, wood mass loss, and visual appearance of the samples (on a scale of 0–10) were recorded at the conclusion of the trail. Mean mass losses of the six species as a result of termite feeding ranged from 13–29%; with the two most resistant bamboo species, Gigantocholoa pseudoarundinacea and Bambusa oldhamii, demonstrating significantly greater resistance to termite attack than the most susceptible bamboo species, Guadua anguistifolia, with both termite species. Dendrocalamus brandisii, Dendrocalamus latiflorus, and Bambusa hirose were intermediate in their termite resistance. Overall, we observed very little difference in wood preference between C. formosanus and C. gestroi. Although bamboo is a very promising construction material, and species clearly differ in their susceptibility to termite attack, all six species evaluated in the present study would require additional protection for use under conditions of high termite pressure. Full article
Show Figures

Back to TopTop