Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = ASTERGED

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3620 KB  
Article
Surface Urban Heat Island Risk Index Computation Using Remote-Sensed Data and Meta Population Dataset on Naples Urban Area (Italy)
by Massimo Musacchio, Alessia Scalabrini, Malvina Silvestri, Federico Rabuffi and Antonio Costanzo
Remote Sens. 2025, 17(19), 3306; https://doi.org/10.3390/rs17193306 - 26 Sep 2025
Viewed by 1363
Abstract
Extreme climate events such as heatwaves are becoming more frequent and pose serious challenges in cities. Urban areas are particularly vulnerable because built surfaces absorb and release heat, while human activities generate additional greenhouse gases. This increases health risks, making it crucial to [...] Read more.
Extreme climate events such as heatwaves are becoming more frequent and pose serious challenges in cities. Urban areas are particularly vulnerable because built surfaces absorb and release heat, while human activities generate additional greenhouse gases. This increases health risks, making it crucial to study population exposure to heat stress. This research focuses on Naples, Italy’s most densely populated city, where intense human activity and unique geomorphological conditions influence local temperatures. The presence of a Surface Urban Heat Island (SUHI) is assessed by deriving high-resolution Land Surface Temperature (LST) in a time series ranging from 2013 to 2023, processed with the Statistical Mono Window (SMW) algorithm in the Google Earth Engine (GEE) environment. SMW needs brightness temperature (Tb) extracted from a Landsat 8 (L8) Thermal InfraRed Sensor (TIRS), emissivity from Advanced Spaceborne and Thermal Emission Radiometer Global Emissivity Database (ASTERGED), and atmospheric correction coefficients from the National Center for Environmental Prediction and Atmospheric Research (NCEP/NCAR). A total of 64 nighttime images were processed and analyzed to assess long-term trends and identify the main heat islands in Naples. The hottest image was compared with population data, including demographic categories such as children, elderly people, and pregnant women. A risk index was calculated by combining temperature values, exposure levels, and the vulnerability of each group. Results identified three major heat islands, showing that risk is strongly linked to both population density and heat island distribution. Incorporating Local Climate Zone (LCZ) classification further highlighted the urban areas most prone to extreme heat based on morphology. Full article
Show Figures

Graphical abstract

20 pages, 10323 KB  
Article
Satellite Time-Series Analysis for Thermal Anomaly Detection in the Naples Urban Area, Italy
by Alessia Scalabrini, Massimo Musacchio, Malvina Silvestri, Federico Rabuffi, Maria Fabrizia Buongiorno and Francesco Salvini
Atmosphere 2024, 15(5), 523; https://doi.org/10.3390/atmos15050523 - 25 Apr 2024
Cited by 3 | Viewed by 3043
Abstract
Naples is the most densely populated Italian city (7744 inhabitants per km2). It is located in a particular geological context: the presence of Mt Vesuvius characterizes the eastern part, and the western part is characterized by the presence of the Phlegrean [...] Read more.
Naples is the most densely populated Italian city (7744 inhabitants per km2). It is located in a particular geological context: the presence of Mt Vesuvius characterizes the eastern part, and the western part is characterized by the presence of the Phlegrean Fields, making Naples a high-geothermal-gradient region. This endogenous heat, combined with the anthropogenic heat due to intense urbanization, has defined Naples as an ideal location for Surface Urban Heat Island (SUHI) analysis. SUHI analysis was effectuated by acquiring the Land Surface Temperature (LST) over Naples municipality by processing Landsat 8 (L8) Thermal Infrared Sensor (TIRS) images in the 2013–2023 time series by employing Google Earth Engine (GEE). In GEE, two different approaches have been followed to analyze thermal images, starting from the Statistical Mono Window (SMW) algorithm, which computes the LST based on the brightness temperature (Tb), the emissivity value, and the atmospheric correction coefficients. The first one is used for the LST retrieval from daytime images; here, the emissivity component is derived using, firstly, the Normalized Difference Vegetation Index (NDVI) and then the Vegetation Cover Method (VCM), defining the Land Surface Emissivity (LSɛ), which considers solar radiation as the main source of energy. The second approach is used for the LST retrieval from nighttime images, where the emissivity is directly estimated from the Advance Spaceborne Thermal Emission Radiometer database (ASTER-GED), as, during nighttime without solar radiation, the main source of energy is the energy emitted by the Earth’s surface. From these two different algorithms, 123 usable daytime and nighttime LST images were downloaded from GEE and analyzed in Quantum GIS (QGIS). The results show that the SUHI is more concentrated in the eastern part, characterized by intense urbanization, as shown by the Corine Land Cover (CLC). At the same time, lower SUHI intensity is detected in the western part, defined by the Land Cover (LC) vegetated class. Also, in the analysis, we highlighted 40 spots (10 hotspots and 10 coldspots, both for daytime and nighttime collection) that present positive or negative temperature peaks for all the time series. Due to the huge amount of data, this work considered only the five representative spots that were most representative for SUHI analysis and determination of thermal anomalies in the urban environment. Full article
(This article belongs to the Special Issue UHI Analysis and Evaluation with Remote Sensing Data)
Show Figures

Figure 1

25 pages, 3505 KB  
Article
Evaluation of Land Surface Temperature Retrieval from FY-3B/VIRR Data in an Arid Area of Northwestern China
by Jinxiong Jiang, Hua Li, Qinhuo Liu, Heshun Wang, Yongming Du, Biao Cao, Bo Zhong and Shanlong Wu
Remote Sens. 2015, 7(6), 7080-7104; https://doi.org/10.3390/rs70607080 - 29 May 2015
Cited by 35 | Viewed by 7218
Abstract
This paper uses the refined Generalized Split-Window (GSW) algorithm to derive the land surface temperature (LST) from the data acquired by the Visible and Infrared Radiometer on FengYun 3B (FY-3B/VIRR). The coefficients in the GSW algorithm corresponding to a series of overlapping ranges [...] Read more.
This paper uses the refined Generalized Split-Window (GSW) algorithm to derive the land surface temperature (LST) from the data acquired by the Visible and Infrared Radiometer on FengYun 3B (FY-3B/VIRR). The coefficients in the GSW algorithm corresponding to a series of overlapping ranges for the mean emissivity, the atmospheric Water Vapor Content (WVC), and the LST are derived using a statistical regression method from the numerical values simulated with an accurate atmospheric radiative transfer model MODTRAN 4 over a wide range of atmospheric and surface conditions. The GSW algorithm is applied to retrieve LST from FY-3B/VIRR data in an arid area in northwestern China. Three emissivity databases are used to evaluate the accuracy of different emissivity databases for LST retrieval, including the ASTER Global Emissivity Database (ASTER_GED) at a 1-km spatial resolution (AG1km), an average of twelve ASTER emissivity data in the 2012 summer and emissivity spectra extracted from spectral libraries. The LSTs retrieved from the three emissivity databases are evaluated with ground-measured LST at four barren surface sites from June 2012 to December 2013 collected during the HiWATER field campaign. The results indicate that using emissivity extracted from ASTER_GED can achieve the highest accuracy with an average bias of 1.26 and −0.04 K and an average root mean square error (RMSE) of 2.69 and 1.38 K for the four sites during daytime and nighttime, respectively. This result indicates that ASTER_GED is a useful emissivity database for generating global LST products from different thermal infrared data and that using FY-3B/VIRR data can produce reliable LST products for other research areas. Full article
Show Figures

Graphical abstract

Back to TopTop