Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = ALICE ITS upgrade

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 21698 KiB  
Review
ATLAS Muon Spectrometer Upgrade for the HL-LHC Era’s Challenges
by Evangelos N. Gazis
Symmetry 2024, 16(8), 1035; https://doi.org/10.3390/sym16081035 - 13 Aug 2024
Viewed by 1905
Abstract
The High-Luminosity Large Hadron Collider (HL-LHC) project aims to improve the performance of the LHC by increasing the proton–proton collision luminosity. New physics discoveries will be possible starting in 2027. The HL-LHC aims to improve the integrated luminosity by a factor of 10 [...] Read more.
The High-Luminosity Large Hadron Collider (HL-LHC) project aims to improve the performance of the LHC by increasing the proton–proton collision luminosity. New physics discoveries will be possible starting in 2027. The HL-LHC aims to improve the integrated luminosity by a factor of 10 concerning the current running LHC’s design value. The HL-LHC project foresees delivering proton–proton collisions at 14 TeV CM (Center of Mass) energy providing the integrated luminosity to a value of 3 ab−1 for the ATLAS and CMS experiments, 50 fb−1 for LHCb, and 5 fb−1 for ALICE. The increased integrated luminosity for the above LHC experiments will provide the potential to discover rare processes while improving these measurements’ signal-to-noise (S/N) ratio statistics. The ATLAS muon spectrometer has been upgraded to face the challenges of the luminosity at the HL-LHC run. The new sub-detectors are as follows: The New Small Wheel (NSW) has replaced the Cathode Strip Chambers (CSC) discs at the internal part of the ATLAS end cups. The new integrated small Monitored Drift Chambers (sMDT) with the Resistive Plate Chambers (RPC) are installed at the outer end of the ATLAS BI (Barrel Inner) layer, in the barrel–endcap transition region, at 1.0 < |η| < 1.3, where η is the pseudo-rapidity (pseudo-rapidity η is a commonly used spatial coordinate describing the angle of a particle relative to the beam axis, defined as η=lntanθ2, where θ is the angle between the vector momentum p and the positive direction of the beam axis). The NSW is an innovative technological achievement, including the MicroMegas (MM) gas detectors in large areas and small-strip Thin Gap Chambers (sTGC), enabling high pT (high pT is the high value of the particles’ transverse momentum versus the beam collision axis) trigger and muon detection. The muon reconstruction, the background rate, other spectrometer parameters, and the NSW performance are also presented. Full article
Show Figures

Figure 1

14 pages, 5670 KiB  
Proceeding Paper
ALICE Highlights
by Francesco Noferini on behalf of the ALICE Collaboration
Proceedings 2019, 13(1), 6; https://doi.org/10.3390/proceedings2019013006 - 6 Jun 2019
Cited by 2 | Viewed by 1470
Abstract
Deconfined strongly interacting QCD matter is produced in the laboratory at the highest energy densities in heavy-ion collisions at the LHC. A selection of recent results from ALICE is presented, spanning observables from the soft sector (bulk particle production and correlations), the hard [...] Read more.
Deconfined strongly interacting QCD matter is produced in the laboratory at the highest energy densities in heavy-ion collisions at the LHC. A selection of recent results from ALICE is presented, spanning observables from the soft sector (bulk particle production and correlations), the hard probes (charmed hadrons and jets) and signatures of possible collective effects in pp and p–Pb collisions with high multiplicity. Finally, the perspectives after the detectors upgrades, taking place in the period 2019–2020, are presented. Full article
(This article belongs to the Proceedings of The 7th International Conference on New Frontiers in Physics)
Show Figures

Figure 1

7 pages, 425 KiB  
Communication
Heavy-Flavor Measurements with the ALICE Experiment at the LHC
by Róbert Vértesi
Universe 2019, 5(5), 130; https://doi.org/10.3390/universe5050130 - 25 May 2019
Cited by 1 | Viewed by 3123
Abstract
Heavy quarks (charm and beauty) are produced early in the nucleus–nucleus collisions, and heavy flavor survives throughout the later stages. Measurements of heavy-flavor quarks thus provide us with means to understand the properties of the Quark–Gluon Plasma, a hot and dense state of [...] Read more.
Heavy quarks (charm and beauty) are produced early in the nucleus–nucleus collisions, and heavy flavor survives throughout the later stages. Measurements of heavy-flavor quarks thus provide us with means to understand the properties of the Quark–Gluon Plasma, a hot and dense state of matter created in heavy-ion collisions. Production of heavy-flavor in small collision systems, on the other hand, can be used to test Quantum-chromodynamics models. After a successful completion of the Run-I data taking period, the increased luminosity from the LHC and an upgraded ALICE detector system in the Run-II data taking period allows for unprecedented precision in the study of heavy quarks. In this article we give an overview of selected recent results on heavy-flavor measurements with ALICE experiments at the LHC. Full article
(This article belongs to the Special Issue The Zimányi School and Analytic Hydrodynamics in High Energy Physics)
Show Figures

Figure 1

5 pages, 425 KiB  
Communication
Medical Applications of the ALPIDE Detector
by Monika Varga-Kofarago
Universe 2019, 5(5), 128; https://doi.org/10.3390/universe5050128 - 24 May 2019
Viewed by 2684
Abstract
The CERN Large Hadron Collider (LHC) ALICE detector is undergoing a major upgrade in the Second Long Shutdown of the LHC in 2019–2020. During this upgrade, the innermost detector, the Inner Tracking System, will be completely replaced by a new detector which is [...] Read more.
The CERN Large Hadron Collider (LHC) ALICE detector is undergoing a major upgrade in the Second Long Shutdown of the LHC in 2019–2020. During this upgrade, the innermost detector, the Inner Tracking System, will be completely replaced by a new detector which is built from the ALPIDE sensor. In the Bergen proton computer tomography (pCT) collaboration, we decided to apply these sensors for medical applications. They can be used for positioning in hadron therapies due to their good position resolution and radiation tolerance. Dose planning of hadron therapy is calculated currently from photon CT measurements, which results in large uncertainties in the planning and therefore in a necessary enlargement of the treatment area. This uncertainty can be reduced by performing the CT scan using protons. The current contribution shows the development of a sampling calorimeter built from the ALPIDE detector for proton CT measurements and describes the state of the project. Full article
(This article belongs to the Special Issue The Zimányi School and Analytic Hydrodynamics in High Energy Physics)
Show Figures

Figure 1

8 pages, 1773 KiB  
Article
Characterization of Highly Irradiated ALPIDE Silicon Sensors
by Valentina Raskina and Filip Křížek
Universe 2019, 5(4), 91; https://doi.org/10.3390/universe5040091 - 14 Apr 2019
Cited by 2 | Viewed by 3756
Abstract
The ALICE (A Large Ion Collider Experiment) experiment at CERN will upgrade its Inner Tracking System (ITS) detector. The new ITS will consist of seven coaxial cylindrical layers of ALPIDE silicon sensors which are based on Monolithic Active Pixel Sensor (MAPS) technology. We [...] Read more.
The ALICE (A Large Ion Collider Experiment) experiment at CERN will upgrade its Inner Tracking System (ITS) detector. The new ITS will consist of seven coaxial cylindrical layers of ALPIDE silicon sensors which are based on Monolithic Active Pixel Sensor (MAPS) technology. We have studied the radiation hardness of ALPIDE sensors using a 30 MeV proton beam provided by the cyclotron U-120M of the Nuclear Physics Institute of the Czech Academy of Sciences in Řež. In this paper, these long-term measurements will be described. After being irradiated up to the total ionization dose 2.7 Mrad and non-ionizing energy loss 2.7 × 10 13 1 MeV n eq · cm 2 , ALPIDE sensors fulfill ITS upgrade project technical design requirements in terms of detection efficiency and fake-hit rate. Full article
(This article belongs to the Special Issue The Zimányi School and Analytic Hydrodynamics in High Energy Physics)
Show Figures

Figure 1

12 pages, 2251 KiB  
Article
Assessing the Impact of Recycled Water Quality and Clogging on Infiltration Rates at A Pioneering Soil Aquifer Treatment (SAT) Site in Alice Springs, Northern Territory (NT), Australia
by Karen E. Barry, Joanne L. Vanderzalm, Konrad Miotlinski and Peter J. Dillon
Water 2017, 9(3), 179; https://doi.org/10.3390/w9030179 - 2 Mar 2017
Cited by 30 | Viewed by 6976
Abstract
Infiltration techniques for managed aquifer recharge (MAR), such as soil aquifer treatment (SAT) can facilitate low-cost water recycling and supplement groundwater resources. However there are still challenges in sustaining adequate infiltration rates in the presence of lower permeability sediments, especially when wastewater containing [...] Read more.
Infiltration techniques for managed aquifer recharge (MAR), such as soil aquifer treatment (SAT) can facilitate low-cost water recycling and supplement groundwater resources. However there are still challenges in sustaining adequate infiltration rates in the presence of lower permeability sediments, especially when wastewater containing suspended solids and nutrients is used to recharge the aquifer. To gain a better insight into reductions in infiltration rates during MAR, a field investigation was carried out via soil aquifer treatment (SAT) using recharge basins located within a mixture of fine and coarse grained riverine deposits in Alice Springs, Northern Territory, Australia. A total of 2.6 Mm3 was delivered via five SAT basins over six years; this evaluation focused on three years of operation (2011–2014), recharging 1.5 Mm3 treated wastewater via an expanded recharge area of approximately 38,400 m2. Average infiltration rates per basin varied from 0.1 to 1 m/day due to heterogeneous soil characteristics and variability in recharge water quality. A treatment upgrade to include sand filtration and UV disinfection (in 2013) prior to recharge improved the average infiltration rate per basin by 40% to 100%. Full article
(This article belongs to the Special Issue Water Quality Considerations for Managed Aquifer Recharge Systems)
Show Figures

Figure 1

Back to TopTop