Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = AADCD

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 441 KiB  
Article
Aromatic L-Amino Acid Decarboxylase Deficiency: A Genetic Screening in Sicilian Patients with Neurological Disorders
by Sandro Santa Paola, Francesco Domenico Di Blasi, Eugenia Borgione, Mariangela Lo Giudice, Marika Giuliano, Rosa Pettinato, Vincenzo Di Stefano, Filippo Brighina, Antonino Lupica and Carmela Scuderi
Genes 2024, 15(1), 134; https://doi.org/10.3390/genes15010134 - 21 Jan 2024
Cited by 2 | Viewed by 2904
Abstract
Aromatic L-amino acid decarboxylase deficiency (AADCd) is a rare autosomal recessive neurometabolic disorder caused by AADC deficiency, an enzyme encoded by the DDC gene. Since the enzyme is involved in the biosynthesis of serotonin and dopamine, its deficiency determines the lack of these [...] Read more.
Aromatic L-amino acid decarboxylase deficiency (AADCd) is a rare autosomal recessive neurometabolic disorder caused by AADC deficiency, an enzyme encoded by the DDC gene. Since the enzyme is involved in the biosynthesis of serotonin and dopamine, its deficiency determines the lack of these neurotransmitters, but also of norepinephrine and epinephrine. Onset is early and the key signs are hypotonia, movement disorders (oculogyric crises, dystonia and hypokinesia), developmental delay and autonomic dysfunction. Taiwan is the site of a potential founder variant (IVS6+4A>T) with a predicted incidence of 1/32,000 births, while only 261 patients with this deficit have been described worldwide. Actually, the number of affected persons could be greater, given that the spectrum of clinical manifestations is broad and still little known. In our study we selected 350 unrelated patients presenting with different neurological disorders including heterogeneous neuromuscular disorders, cognitive deficit, behavioral disorders and autism spectrum disorder, for which the underlying etiology had not yet been identified. Molecular investigation of the DDC gene was carried out with the aim of identifying affected patients and/or carriers. Our study shows a high frequency of carriers (2.57%) in Sicilian subjects with neurological deficits, with a higher concentration in northern and eastern Sicily. Assuming these data as representative of the general Sicilian population, the risk may be comparable to some rare diseases included in the newborn screening programs such as spinal muscular atrophy, cystic fibrosis and phenylketonuria. Full article
(This article belongs to the Special Issue Genetics and Genomics of Inherited Metabolic Diseases)
Show Figures

Figure 1

9 pages, 235 KiB  
Article
Aromatic L-Amino-Acid Decarboxylase Deficiency Screening by Analysis of 3-O-Methyldopa in Dried Blood Spots: Results of a Multicentric Study in Neurodevelopmental Disorders
by Susanna Rizzi, Carlotta Spagnoli, Melissa Bellini, Carlo Alberto Cesaroni, Elisabetta Spezia, Patrizia Bergonzini, Elisa Caramaschi, Luca Soliani, Emanuela Claudia Turco, Benedetta Piccolo, Laura Demuth, Duccio Maria Cordelli, Giacomo Biasucci, Daniele Frattini and Carlo Fusco
Genes 2023, 14(9), 1828; https://doi.org/10.3390/genes14091828 - 21 Sep 2023
Cited by 2 | Viewed by 1912
Abstract
Aromatic L-amino acid decarboxylase deficiency (AADCd) is a rare recessive metabolic disorder caused by pathogenic homozygous or compound heterozygous variants in the dopa decarboxylase (DDC) gene. Adeno-associated viral vector-mediated gene transfer of the human DDC gene injected into the putamen is available. The [...] Read more.
Aromatic L-amino acid decarboxylase deficiency (AADCd) is a rare recessive metabolic disorder caused by pathogenic homozygous or compound heterozygous variants in the dopa decarboxylase (DDC) gene. Adeno-associated viral vector-mediated gene transfer of the human DDC gene injected into the putamen is available. The typical presentation is characterized by early-onset hypotonia, severe developmental delay, movement disorders, and dysautonomia. Recently, mild and even atypical phenotypes have been reported, increasing the diagnostic challenge. The aim of this multicentric study is to identify the prevalence of AADCd in a population of patients with phenotypic clusters characterized by neurodevelopmental disorders (developmental delay/intellectual disability, and/or autism) by 3-O-methyldopa (3-OMD) detection in dried blood spots (DBS). It is essential to identify AADCd promptly, especially within non-typical phenotypic clusters, because better results are obtained when therapy is quickly started in mild-moderate phenotypes. Between 2021 and 2023, 390 patients with non-specific phenotypes possibly associated with AADCd were tested; none resulted in a positive result. This result highlights that the population to be investigated for AADCd should have more defined clinical characteristics: association with common signs (hypotonia) and/or pathognomonic symptoms (oculogyric crisis and dysautonomia). It is necessary to continue to screen selected clusters for reaching diagnosis and improving long-term outcomes through treatment initiation. This underscores the role of newborn screening in identifying AADCd. Full article
(This article belongs to the Section Neurogenomics)
Back to TopTop