Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = A. thaliana pif mutants

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4398 KB  
Article
DNA Methylation Fine-Tunes Light- and Hormone-Responsive Growth Plasticity in Arabidopsis Seedlings
by Emanuela Talarico, Eleonora Greco, Adriana Chiappetta, Fabrizio Araniti and Leonardo Bruno
Int. J. Mol. Sci. 2026, 27(2), 1034; https://doi.org/10.3390/ijms27021034 - 20 Jan 2026
Viewed by 156
Abstract
DNA methylation regulates plant growth by modulating gene expression; however, its contribution to hormone responsiveness and photomorphogenesis remains only partially understood. We examined Arabidopsis thaliana DNA methylation mutants met1 and drm1, drm2, and cmt3 (ddc) under defined light regimes [...] Read more.
DNA methylation regulates plant growth by modulating gene expression; however, its contribution to hormone responsiveness and photomorphogenesis remains only partially understood. We examined Arabidopsis thaliana DNA methylation mutants met1 and drm1, drm2, and cmt3 (ddc) under defined light regimes and following exogenous treatments with auxin, gibberellin, and the auxin transport inhibitor TIBA. Hypocotyl elongation and cotyledon expansion exhibited strong light dependency across all genotypes, with met1 seedlings developing a consistently reduced cotyledon area and ddc seedlings displaying impaired hypocotyl elongation under specific light qualities. Exogenous auxin inhibited growth in all genotypes, whereas GA3 promoted elongation in hypocotyls and roots (by approximately 75–80% and 15–35%, respectively, in Col0 and met1), with ddc exhibiting delayed and non-linear dose-dependent sensitivity. Quantitative RT–PCR analysis revealed differential expression of genes involved in auxin transport (PIN1, PIN3, PIN7), auxin signalling (ARF7, IAA3, LAX3), circadian regulation (TOC1, LHY, CCA1), and light signalling (PIFs, HY5, HYH), supporting a link between DNA methylation status and coordinated regulation of hormone-, light-, and clock-controlled transcriptional networks. Together, these findings demonstrate that MET1- and DRM/CMT-dependent methylation pathways integrate epigenetic regulation with environmental and hormonal cues, modulating the intensity, timing, and organ specificity of growth responses, thereby fine-tuning growth plasticity during early Arabidopsis seedling development. Full article
Show Figures

Figure 1

17 pages, 7629 KB  
Article
Involvement of Phytochrome-Interacting Factors in High-Irradiance Adaptation
by Pavel Pashkovskiy, Anna Abramova, Alexandra Khudyakova, Mikhail Vereshchagin, Vladimir Kuznetsov and Vladimir D. Kreslavski
Int. J. Mol. Sci. 2025, 26(23), 11660; https://doi.org/10.3390/ijms262311660 - 2 Dec 2025
Viewed by 413
Abstract
Phytochrome-interacting factors (PIFs) are key transcriptional regulators of phytochrome signalling that coordinate photomorphogenesis and photosynthesis under different environmental conditions. PIFs play an important role in this regulation and act mainly as negative regulators of photomorphogenesis, but under high-intensity light (HIL), their functions can [...] Read more.
Phytochrome-interacting factors (PIFs) are key transcriptional regulators of phytochrome signalling that coordinate photomorphogenesis and photosynthesis under different environmental conditions. PIFs play an important role in this regulation and act mainly as negative regulators of photomorphogenesis, but under high-intensity light (HIL), their functions can also include adaptive roles. We investigated the contribution of individual PIFs to the adaptation of the photosynthetic apparatus in wild-type A. thaliana and pif4, pif5, pif4pif5, and pif1pif3pif4pif5 mutants exposed to HIL for 0, 16, 32, or 48 h. Chlorophyll fluorescence parameters (Y(II), Fv/Fm, NPQ), net photosynthesis (Pn), transpiration rates, stomatal conductance (gS), pigment contents and the expression of key genes were evaluated. The response of plants to HIL varied depending on the duration of exposure. After 16 h of irradiation, the greatest reductions in Pn and gS were observed in the pif4pif5 and pif1pif3pif4pif5 mutants, whereas after 48 h, the decreases were most pronounced in the pif4, pif5, and pif4pif5 mutants. After 16 h of HIL exposure, the absence of pif4 and pif5 did not substantially alter the chlorophyll fluorescence parameters. However, after 48 h, both Y(II) and Fv/Fm were lower in these mutants than in the wild type, indicating changes in PSII functional status rather than direct reductions in photochemical quantum efficiency. At 16 h, chlorophyll levels were the highest in pif5 and WT, whereas anthocyanin and UV-absorbing pigment (UAP) levels were the highest in pif4, pif5 and WT. After 48 h, the highest levels of any pigments were detected in the WT and the pif1pif3pif4pif5 mutant. These results suggest that the accumulation of anthocyanins and UAPs under HIL is likely associated with the regulation of transcription factors, such as PIFs, de-etiolated 1 (DET1), constitutive photomorphogenic 1 (COP1), and elongated hypocotyl 5 (HY5). During prolonged HIL exposure, the absence of PIF4 and PIF5 has a critical impact on photosynthesis and the accumulation of photosynthetic pigments, whereas the simultaneous loss of PIF1, PIF3, PIF4, and PIF5 is less detrimental. This finding likely indicates opposite roles of PIF1 and PIF3 in the above-described processes, on the one hand, and PIF4 and PIF5, on the other hand, under HIL conditions. Full article
(This article belongs to the Special Issue Spectral Control of Stress Response in Plants)
Show Figures

Figure 1

17 pages, 3428 KB  
Article
The Gene Expression of the Transcription Factors HY5 and HFR1 Is Involved in the Response of Arabidopsis thaliana to Artificial Sun-like Lighting Systems
by Peter Beatrice, Gustavo Agosto, Alessio Miali, Donato Chiatante and Antonio Montagnoli
Biology 2025, 14(10), 1315; https://doi.org/10.3390/biology14101315 - 23 Sep 2025
Viewed by 987
Abstract
Plants can sense light signals using specific photoreceptors, activating light signaling pathways to precisely regulate photomorphogenesis and shade-avoidance responses. This study examines the molecular responses of Arabidopsis thaliana to the CoeLux® lighting system, a unique LED-based light source designed to simulate natural [...] Read more.
Plants can sense light signals using specific photoreceptors, activating light signaling pathways to precisely regulate photomorphogenesis and shade-avoidance responses. This study examines the molecular responses of Arabidopsis thaliana to the CoeLux® lighting system, a unique LED-based light source designed to simulate natural sunlight. Previous studies found that the CoeLux® light type, characterized by a higher blue-to-green ratio and reduced blue light levels, stimulates responses in plants comparable to those displayed in shade conditions. This research compared the effects of CoeLux® lighting to conventional high-pressure sodium (HPS) lamps, focusing on the expression of critical photomorphogenesis-related genes under both long- and short-term light treatments. Lower HY5 and elevated HFR1 expression levels were observed under the CoeLux® light type and low-intensity light conditions. On the contrary, the influence of the CoeLux® light type on COP1 and PIFs expression levels seems more marginal. These responses suggest a complex regulation involving both gene expression and protein-level adjustments. Additionally, mutant plants lacking these essential regulatory genes displayed altered morphologies under CoeLux® light, underscoring the functional contribution of these genes in the adaptation to light. Our findings are twofold, advancing the understanding of plant–light relationships and plant adaptation to artificial light environments. These may foster strategies for optimizing indoor plant growth under simulated sunlight conditions. Full article
Show Figures

Figure 1

27 pages, 11222 KB  
Article
Mitochondrial ATP Synthase beta-Subunit Affects Plastid Retrograde Signaling in Arabidopsis
by Hao Liu, Zhixin Liu, Aizhi Qin, Yaping Zhou, Susu Sun, Yumeng Liu, Mengke Hu, Jincheng Yang and Xuwu Sun
Int. J. Mol. Sci. 2024, 25(14), 7829; https://doi.org/10.3390/ijms25147829 - 17 Jul 2024
Cited by 3 | Viewed by 2493
Abstract
Plastid retrograde signaling plays a key role in coordinating the expression of plastid genes and photosynthesis-associated nuclear genes (PhANGs). Although plastid retrograde signaling can be substantially compromised by mitochondrial dysfunction, it is not yet clear whether specific mitochondrial factors are required to regulate [...] Read more.
Plastid retrograde signaling plays a key role in coordinating the expression of plastid genes and photosynthesis-associated nuclear genes (PhANGs). Although plastid retrograde signaling can be substantially compromised by mitochondrial dysfunction, it is not yet clear whether specific mitochondrial factors are required to regulate plastid retrograde signaling. Here, we show that mitochondrial ATP synthase beta-subunit mutants with decreased ATP synthase activity are impaired in plastid retrograde signaling in Arabidopsis thaliana. Transcriptome analysis revealed that the expression levels of PhANGs were significantly higher in the mutants affected in the AT5G08670 gene encoding the mitochondrial ATP synthase beta-subunit, compared to wild-type (WT) seedlings when treated with lincomycin (LIN) or norflurazon (NF). Further studies indicated that the expression of nuclear genes involved in chloroplast and mitochondrial retrograde signaling was affected in the AT5G08670 mutant seedlings treated with LIN. These changes might be linked to the modulation of some transcription factors (TFs), such as LHY (Late Elongated Hypocotyl), PIF (Phytochrome-Interacting Factors), MYB, WRKY, and AP2/ERF (Ethylene Responsive Factors). These findings suggest that the activity of mitochondrial ATP synthase significantly influences plastid retrograde signaling. Full article
Show Figures

Figure 1

15 pages, 2795 KB  
Article
Independent Responses of Photosynthesis and Plant Morphology to Alterations of PIF Proteins and Light-Dependent MicroRNA Contents in Arabidopsis thaliana pif Mutants Grown under Lights of Different Spectral Compositions
by Pavel Pashkovskiy, Vladimir Kreslavski, Alexandra Khudyakova, Elena S. Pojidaeva, Anatoliy Kosobryukhov, Vladimir Kuznetsov and Suleyman I. Allakhverdiev
Cells 2022, 11(24), 3981; https://doi.org/10.3390/cells11243981 - 9 Dec 2022
Cited by 6 | Viewed by 2825
Abstract
The effects of the quality of light on the content of phytochrome interacting factors (PIFs) such as PIF3, PIF4 and PIF5, as well as the expression of various light-dependent microRNAs, in adult Arabidopsis thaliana pif mutant plants (pif4, pif5, pif3pif5 [...] Read more.
The effects of the quality of light on the content of phytochrome interacting factors (PIFs) such as PIF3, PIF4 and PIF5, as well as the expression of various light-dependent microRNAs, in adult Arabidopsis thaliana pif mutant plants (pif4, pif5, pif3pif5, pif4pif5, pif3pif4pif5) were studied. We demonstrate that under blue light, the pif4 mutant had maximal expression of most of the studied microRNAs (miR163, miR319, miR398, miR408, miR833) when the PIF4 protein in plants was reduced. This finding indicates that the PIF4 protein is involved in the downregulation of this group of microRNAs. This assumption is additionally confirmed by the fact that under the RL spectrum in pif5 mutants, practically the same miRNAs decrease expression against the background of an increase in the amount of PIF4 protein. Unlike the WT and other mutants, the pif4 mutant responded to the BL spectrum not only by activating the expression of light-dependent miRNAs, but also by a significant increase in the expression of transcription factors and key light signalling genes. These molecular reactions do not affect the activity of photosynthesis but may be involved in the formation of a light quality-dependent phenotype. Full article
Show Figures

Figure 1

19 pages, 4598 KB  
Article
Genetic Dissection of Light-Regulated Adventitious Root Induction in Arabidopsis thaliana Hypocotyls
by Yinwei Zeng, Sebastien Schotte, Hoang Khai Trinh, Inge Verstraeten, Jing Li, Ellen Van de Velde, Steffen Vanneste and Danny Geelen
Int. J. Mol. Sci. 2022, 23(10), 5301; https://doi.org/10.3390/ijms23105301 - 10 May 2022
Cited by 9 | Viewed by 4552
Abstract
Photomorphogenic responses of etiolated seedlings include the inhibition of hypocotyl elongation and opening of the apical hook. In addition, dark-grown seedlings respond to light by the formation of adventitious roots (AR) on the hypocotyl. How light signaling controls adventitious rooting is less well [...] Read more.
Photomorphogenic responses of etiolated seedlings include the inhibition of hypocotyl elongation and opening of the apical hook. In addition, dark-grown seedlings respond to light by the formation of adventitious roots (AR) on the hypocotyl. How light signaling controls adventitious rooting is less well understood. Hereto, we analyzed adventitious rooting under different light conditions in wild type and photomorphogenesis mutants in Arabidopsis thaliana. Etiolation was not essential for AR formation but raised the competence to form AR under white and blue light. The blue light receptors CRY1 and PHOT1/PHOT2 are key elements contributing to the induction of AR formation in response to light. Furthermore, etiolation-controlled competence for AR formation depended on the COP9 signalosome, E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC (COP1), the COP1 interacting SUPPRESSOR OF PHYA-105 (SPA) kinase family members (SPA1,2 and 3) and Phytochrome-Interacting Factors (PIF). In contrast, ELONGATED HYPOCOTYL5 (HY5), suppressed AR formation. These findings provide a genetic framework that explains the high and low AR competence of Arabidopsis thaliana hypocotyls that were treated with dark, and light, respectively. We propose that light-induced auxin signal dissipation generates a transient auxin maximum that explains AR induction by a dark to light switch. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

20 pages, 1423 KB  
Article
Rice Phytochrome B (OsPhyB) Negatively Regulates Dark- and Starvation-Induced Leaf Senescence
by Weilan Piao, Eun-Young Kim, Su-Hyun Han, Yasuhito Sakuraba and Nam-Chon Paek
Plants 2015, 4(3), 644-663; https://doi.org/10.3390/plants4030644 - 1 Sep 2015
Cited by 30 | Viewed by 10838
Abstract
Light regulates leaf senescence and light deprivation causes large-scale transcriptional reprogramming to dismantle cellular components and remobilize nutrients to sink organs, such as seeds and storage tissue. We recently reported that in Arabidopsis (Arabidopsis thaliana), Phytochrome-Interacting Factor4 (PIF4) and PIF5 promote [...] Read more.
Light regulates leaf senescence and light deprivation causes large-scale transcriptional reprogramming to dismantle cellular components and remobilize nutrients to sink organs, such as seeds and storage tissue. We recently reported that in Arabidopsis (Arabidopsis thaliana), Phytochrome-Interacting Factor4 (PIF4) and PIF5 promote dark-induced senescence and natural senescence by directly activating the expression of typical senescence-associated genes (SAGs), including ORESARA1 (ORE1) and ETHYLENE INSENSITIVE3 (EIN3). In contrast, phytochrome B (PhyB) inhibits leaf senescence by repressing PIF4 and PIF5 at the post-translational level. Although we found how red light signaling represses leaf senescence in Arabidopsis, it remains unknown whether PhyB and/or PhyA are involved in leaf senescence in rice (Oryza sativa). Here we show that rice phyB knockout mutants (osphyB-1, -2, and -3) exhibited an early senescence phenotype during dark-induced senescence, but an osphyA knockout mutant (osphyA-3) senesced normally. The RT-qPCR analysis revealed that several senescence-associated genes, including OsORE1 and OsEIN3, were significantly up-regulated in osphyB-2 mutants, indicating that OsPhyB also inhibits leaf senescence, like Arabidopsis PhyB. We also found that leaf segments of osphyB-2 senesced faster even under light conditions. Supplementation with nitrogen compounds, such as KNO3 and NH4NO3, rescued the early senescence phenotype of osphyB-2, indicating that starvation is one of the major signaling factors in the OsPhyB-dependent leaf senescence pathway. Full article
(This article belongs to the Special Issue Plant Senescence)
Show Figures

Figure 1

Back to TopTop