Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = 9MB torch

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4873 KB  
Article
Computational Modeling of the Effect of Nitrogen on the Plasma Spray Process with Ar–H2–N2 Mixtures
by Byeongryun Jeon, Hansol Kwon, Yeon Woo Yoo, Do Hyun Kim, Youngjin Park, Yong-jin Kang, Anthony B. Murphy and Hunkwan Park
Processes 2025, 13(4), 1155; https://doi.org/10.3390/pr13041155 - 10 Apr 2025
Cited by 5 | Viewed by 1397
Abstract
Plasma spray coating employs a high-temperature plasma jet to melt and deposit powdered materials onto substrates and plays a critical role in aerospace and manufacturing. Despite its importance, the influence of torch behavior, particularly the thermal response of plasma to gas composition changes, [...] Read more.
Plasma spray coating employs a high-temperature plasma jet to melt and deposit powdered materials onto substrates and plays a critical role in aerospace and manufacturing. Despite its importance, the influence of torch behavior, particularly the thermal response of plasma to gas composition changes, remains inadequately characterized. In this study, a three-dimensional MHD simulation using OpenFOAM (v2112) was performed on a Metco 9MB plasma torch operating in an Ar–H2–N2 environment under the LTE assumption to investigate the effect of nitrogen addition. The simulation revealed that increasing nitrogen levels results in a dual effect on the temperature distribution: temperatures rise near the cathode tip and decrease downstream, likely due to variations in the net emission coefficient and enthalpy characteristics of nitrogen. Furthermore, although the outlet velocity remained largely unaffected, the Mach number increased as the nitrogen reduced the speed of sound. These findings provide essential insights for optimizing ternary gas mixtures to enhance coating efficiency in thermal spray applications. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

9 pages, 2497 KB  
Article
Swirling Effects in Atmospheric Plasma Spraying Process: Experiments and Simulation
by Israel Martínez-Villegas, Alma G. Mora-García, Haideé Ruiz-Luna, John McKelliget, Carlos A. Poblano-Salas, Juan Muñoz-Saldaña and Gerardo Trápaga-Martínez
Coatings 2020, 10(4), 388; https://doi.org/10.3390/coatings10040388 - 15 Apr 2020
Cited by 4 | Viewed by 4280
Abstract
Experimental evidence of swirling effects in 3D trajectories of in-flight particles is presented based on static and dynamic footprints analysis as a function of stand-off distance of Al2O3 deposited employing a Metco-9MB torch. Swirling effects were validated with a proprietary [...] Read more.
Experimental evidence of swirling effects in 3D trajectories of in-flight particles is presented based on static and dynamic footprints analysis as a function of stand-off distance of Al2O3 deposited employing a Metco-9MB torch. Swirling effects were validated with a proprietary computational fluid dynamics (CFD) code that considers an argon-hydrogen plasma stream, in-flight particles trajectories, both creating the spray cone, and particle impact to form a footprint on a fixed substrate located at different distances up to 120 mm. Static and dynamic footprints showed that swirl produces a slight deviation of individual particle trajectories and thus footprint rotation, which may affect coating characteristics. Full article
(This article belongs to the Section Plasma Coatings, Surfaces & Interfaces)
Show Figures

Graphical abstract

13 pages, 7605 KB  
Article
A Comparative Study of YSZ Suspensions and Coatings
by Fariba Tarasi, Elnaz Alebrahim, Ali Dolatabadi and Christian Moreau
Coatings 2019, 9(3), 188; https://doi.org/10.3390/coatings9030188 - 13 Mar 2019
Cited by 13 | Viewed by 4608
Abstract
The demand for suspensions that are used in thermal spray processes is expanding from research labs using the lab-prepared suspensions toward actual coating production in different industrial sectors. Industrial applications dictate the reduced production time and effort, which may in turn justify the [...] Read more.
The demand for suspensions that are used in thermal spray processes is expanding from research labs using the lab-prepared suspensions toward actual coating production in different industrial sectors. Industrial applications dictate the reduced production time and effort, which may in turn justify the development of the market for ready-to-use commercial suspensions. To this end, some of the powder suppliers have already taken steps forward by introducing, to the market, suspensions of some of the most used materials, such as yttria-stabilized zirconia (YSZ), alumina, and titania. However, there is a need to compare the suspension characteristics over time and the resultant coatings when using these suspensions when compared with the freshly prepared homemade suspensions. In this work, such a comparison is done using YSZ suspensions of the sub-micron to a few micron powders. In addition, some changes in the suspensions’ formula were performed as a tool to vary the coatings’ microstructures in a more predictable way, without any variation of the spray parameters. The coatings were generated while using both radial and axial injection of the suspensions into Oerlikon-Metco 3MB and Mettech Axial III plasma spray torches, respectively. A clear effect of suspension viscosity on the coating microstructure was observed using the 3MB torch with a radial injection of suspension (i.e., cross flow atomization). However, the viscosity role was not dominant when using the Axial III torch with an axial feed injection system (i.e., coaxial flow atomization). Full article
Show Figures

Figure 1

Back to TopTop