Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = 7-isopentenyloxycoumarin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1998 KB  
Article
Protection of Mitochondrial Potential and Activity by Oxyprenylated Phenylpropanoids
by Francesco Epifano, Salvatore Genovese, Lucia Palumbo, Chiara Collevecchio and Serena Fiorito
Antioxidants 2023, 12(2), 259; https://doi.org/10.3390/antiox12020259 - 23 Jan 2023
Cited by 5 | Viewed by 2186
Abstract
A series of five naturally occurring oxyprenylated phenylpropanoids, namely, the coumarins auraptene (7-geranyloxycoumarin) 1 and 7-isopentenyloxycoumarin 2, and the coumaric acid and ferulic acid derivatives, 4’-isopentenyloxycoumaric acid 3, boropinic acid 4, and 4’-geranyloxyferulic acid 5 were tested for their effects [...] Read more.
A series of five naturally occurring oxyprenylated phenylpropanoids, namely, the coumarins auraptene (7-geranyloxycoumarin) 1 and 7-isopentenyloxycoumarin 2, and the coumaric acid and ferulic acid derivatives, 4’-isopentenyloxycoumaric acid 3, boropinic acid 4, and 4’-geranyloxyferulic acid 5 were tested for their effects on mitochondrial functionality using the organophosphate pesticides glyphosate and chlorpyrifos, and resveratrol, as the reference. While not showing an appreciable in vitro antioxidant activity, and virtually no or a little effect on the viability of non-cancer cell lines BEAS-2B and SHSY-5Y, all phytochemicals exhibited a marked protective effect on mitochondrial potential and activity, with values that were comparable to resveratrol. Auraptene 1 and 7-isopentenyloxycoumarin 2 were seen to be the most effective secondary metabolite to this concern, in particular in being able to completely abolish the decrease of mitochondrial potential induced by increasing concentration of both glyphosate and chlorpyrifos. All the compounds tested also exhibited a protective effect on mitochondrial activity. The potency displayed will shed more light on the molecular basis of the beneficial effects of auraptene, 7-isopentenyloxycoumarin, and structurally related oxyprenylated phenylpropanoids reported to date in the literature. Full article
Show Figures

Figure 1

24 pages, 14258 KB  
Article
Isolation and In Silico SARS-CoV-2 Main Protease Inhibition Potential of Jusan Coumarin, a New Dicoumarin from Artemisia glauca
by Yerlan M. Suleimen, Rani A. Jose, Raigul N. Suleimen, Margarita Y. Ishmuratova, Suzanne Toppet, Wim Dehaen, Aisha A. Alsfouk, Eslam B. Elkaeed, Ibrahim H. Eissa and Ahmed M. Metwaly
Molecules 2022, 27(7), 2281; https://doi.org/10.3390/molecules27072281 - 31 Mar 2022
Cited by 24 | Viewed by 6297
Abstract
A new dicoumarin, jusan coumarin, (1), has been isolated from Artemisia glauca aerial parts. The chemical structure of jusan coumarin was estimated, by 1D, 2D NMR as well as HR-Ms spectroscopic methods, to be 7-hydroxy-6-methoxy-3-[(2-oxo-2H-chromen-6-yl)oxy]-2H-chromen-2-one. As the first time to be [...] Read more.
A new dicoumarin, jusan coumarin, (1), has been isolated from Artemisia glauca aerial parts. The chemical structure of jusan coumarin was estimated, by 1D, 2D NMR as well as HR-Ms spectroscopic methods, to be 7-hydroxy-6-methoxy-3-[(2-oxo-2H-chromen-6-yl)oxy]-2H-chromen-2-one. As the first time to be introduced in nature, its potential against SARS-CoV-2 has been estimated using various in silico methods. Molecular similarity and fingerprints experiments have been utilized for 1 against nine co-crystallized ligands of COVID-19 vital proteins. The results declared a great similarity between Jusan Coumarin and X77, the ligand of COVID-19 main protease (PDB ID: 6W63), Mpro. To authenticate the obtained outputs, a DFT experiment was achieved to confirm the similarity of X77 and 1. Consequently, 1 was docked against Mpro. The results clarified that 1 bonded in a correct way inside Mpro active site, with a binding energy of −18.45 kcal/mol. Furthermore, the ADMET and toxicity profiles of 1 were evaluated and showed the safety of 1 and its likeness to be a drug. Finally, to confirm the binding and understand the thermodynamic characters between 1 and Mpro, several molecular dynamics (MD) simulations studies have been administered. Additionally, the known coumarin derivative, 7-isopentenyloxycoumarin (2), has been isolated as well as β-sitosterol (3). Full article
Show Figures

Figure 1

10 pages, 2460 KB  
Review
7-Isopentenyloxycoumarin: What Is New across the Last Decade
by Francesca Preziuso, Salvatore Genovese, Lorenzo Marchetti, Majid Sharifi-Rad, Lucia Palumbo, Francesco Epifano and Serena Fiorito
Molecules 2020, 25(24), 5923; https://doi.org/10.3390/molecules25245923 - 14 Dec 2020
Cited by 12 | Viewed by 4170
Abstract
7-Isopentenyloxycoumarin is among the most widespread naturally occurring prenyloxy umbelliferone derivatives. This secondary metabolite of mixed biosynthetic origin has been typically isolated from plants belonging to several genera of the Rutaceae and Apiaceae families, comprising widely used medicinal plants and in general plants [...] Read more.
7-Isopentenyloxycoumarin is among the most widespread naturally occurring prenyloxy umbelliferone derivatives. This secondary metabolite of mixed biosynthetic origin has been typically isolated from plants belonging to several genera of the Rutaceae and Apiaceae families, comprising widely used medicinal plants and in general plants with beneficial effects on human welfare, as well as edible fruits and vegetables. Although known for quite a long time (more than 50 years), only in the last two decades has this natural compound been revealed to exert powerful and promising pharmacological properties, such as active cancer chemopreventive, antibacterial, antiprotozoal, antifungal, anti-inflammatory, neuroprotective, and antioxidant properties, among the activities best outlined in the recent literature. The aim of this comprehensive miniature review article is to detail the novel natural sources and the effects described during the last decade for 7-isopentenyloxycoumarin and what has been reported on the mechanisms of action underlying the observed biological activities of this oxyprenylated secondary metabolite. In view of the herein described data, suggestions on how to address future research on the abovementioned natural product and structurally related derivatives in the best ways according to the authors will be also provided. Full article
Show Figures

Figure 1

11 pages, 4500 KB  
Article
Auraptene and Other Prenyloxyphenylpropanoids Suppress Microglial Activation and Dopaminergic Neuronal Cell Death in a Lipopolysaccharide-Induced Model of Parkinson’s Disease
by Satoshi Okuyama, Tomoki Semba, Nobuki Toyoda, Francesco Epifano, Salvatore Genovese, Serena Fiorito, Vito Alessandro Taddeo, Atsushi Sawamoto, Mitsunari Nakajima and Yoshiko Furukawa
Int. J. Mol. Sci. 2016, 17(10), 1716; https://doi.org/10.3390/ijms17101716 - 17 Oct 2016
Cited by 42 | Viewed by 6533
Abstract
In patients with Parkinson’s disease (PD), hyperactivated inflammation in the brain, particularly microglial hyperactivation in the substantia nigra (SN), is reported to be one of the triggers for the delayed loss of dopaminergic neurons and sequential motor functional impairments. We previously reported that [...] Read more.
In patients with Parkinson’s disease (PD), hyperactivated inflammation in the brain, particularly microglial hyperactivation in the substantia nigra (SN), is reported to be one of the triggers for the delayed loss of dopaminergic neurons and sequential motor functional impairments. We previously reported that (1) auraptene (AUR), a natural prenyloxycoumain, suppressed inflammatory responses including the hyperactivation of microglia in the ischemic brain and inflamed brain, thereby inhibiting neuronal cell death; (2) 7-isopentenyloxycoumarin (7-IP), another natural prenyloxycoumain, exerted anti-inflammatory and neuroprotective effects against excitotoxicity; and (3) 4′-geranyloxyferulic acid (GOFA), a natural prenyloxycinnamic acid, also exerted anti-inflammatory effects. In the present study, using an intranigral lipopolysaccharide (LPS)-induced PD-like mouse model, we investigated whether AUR, 7-IP, and GOFA suppress microglial activation and protect against dopaminergic neuronal cell death in the SN. We successfully showed that these prenyloxyphenylpropanoids exhibited these prospective abilities, suggesting the potential of these compounds as neuroprotective agents for patients with PD. Full article
(This article belongs to the Special Issue Neuroprotective Strategies 2016)
Show Figures

Figure 1

Back to TopTop