Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = 4OHtam

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 585 KB  
Article
Effect of Genetic Variability in 20 Pharmacogenes on Concentrations of Tamoxifen and Its Metabolites
by Yuanhuang Chen, Lauren A. Marcath, Finn Magnus Eliassen, Tone Hoel Lende, Havard Soiland, Gunnar Mellgren, Thomas Helland and Daniel Louis Hertz
J. Pers. Med. 2021, 11(6), 507; https://doi.org/10.3390/jpm11060507 - 4 Jun 2021
Cited by 6 | Viewed by 4282
Abstract
Background: Tamoxifen, as a treatment of estrogen receptor positive (ER+) breast cancer, is a weak anti-estrogen that requires metabolic activation to form metabolites with higher anti-estrogenic activity. Endoxifen is the most-studied active tamoxifen metabolite, and endoxifen concentrations are highly associated with CYP2D6 activity. [...] Read more.
Background: Tamoxifen, as a treatment of estrogen receptor positive (ER+) breast cancer, is a weak anti-estrogen that requires metabolic activation to form metabolites with higher anti-estrogenic activity. Endoxifen is the most-studied active tamoxifen metabolite, and endoxifen concentrations are highly associated with CYP2D6 activity. Associations of tamoxifen efficacy with measured or CYP2D6-predicted endoxifen concentrations have been inconclusive. Another active metabolite, 4-OHtam, and other, less active metabolites, Z-4′-endoxifen and Z-4′-OHtam, have also been reported to be associated with tamoxifen efficacy. Method: Genotype for 20 pharmacogenes was determined by VeriDose® Core Panel and VeriDose®CYP2D6 CNV Panel, followed by translation to metabolic activity phenotype following standard activity scoring. Concentrations of tamoxifen and seven metabolites were measured by UPLC-MS/MS in serum samples collected from patients receiving 20 mg tamoxifen per day. Metabolic activity was tested for association with tamoxifen and its metabolites using linear regression with adjustment for upstream metabolites to identify genes associated with each step in the tamoxifen metabolism pathway. Results: A total of 187 patients with genetic and tamoxifen concentration data were included in the analysis. CYP2D6 was the primary gene associated with the tamoxifen metabolism pathway, especially the conversion of tamoxifen to endoxifen. CYP3A4 and CYP2C9 were also responsible for the metabolism of tamoxifen. CYP2C9 especially impacted the hydroxylation to 4-OHtam, and this involved the OATP1B1 (SLCO1B1) transporter. Conclusion: Multiple genes are involved in tamoxifen metabolism and multi-gene panels could be useful to predict active metabolite concentrations and guide tamoxifen dosing. Full article
(This article belongs to the Special Issue Genome Research and Personalized Medicine in Breast Cancer)
Show Figures

Figure 1

23 pages, 1599 KB  
Review
Generating a Precision Endoxifen Prediction Algorithm to Advance Personalized Tamoxifen Treatment in Patients with Breast Cancer
by Thomas Helland, Sarah Alsomairy, Chenchia Lin, Håvard Søiland, Gunnar Mellgren and Daniel Louis Hertz
J. Pers. Med. 2021, 11(3), 201; https://doi.org/10.3390/jpm11030201 - 13 Mar 2021
Cited by 22 | Viewed by 5353
Abstract
Tamoxifen is an endocrine treatment for hormone receptor positive breast cancer. The effectiveness of tamoxifen may be compromised in patients with metabolic resistance, who have insufficient metabolic generation of the active metabolites endoxifen and 4-hydroxy-tamoxifen. This has been challenging to validate due to [...] Read more.
Tamoxifen is an endocrine treatment for hormone receptor positive breast cancer. The effectiveness of tamoxifen may be compromised in patients with metabolic resistance, who have insufficient metabolic generation of the active metabolites endoxifen and 4-hydroxy-tamoxifen. This has been challenging to validate due to the lack of measured metabolite concentrations in tamoxifen clinical trials. CYP2D6 activity is the primary determinant of endoxifen concentration. Inconclusive results from studies investigating whether CYP2D6 genotype is associated with tamoxifen efficacy may be due to the imprecision in using CYP2D6 genotype as a surrogate of endoxifen concentration without incorporating the influence of other genetic and clinical variables. This review summarizes the evidence that active metabolite concentrations determine tamoxifen efficacy. We then introduce a novel approach to validate this relationship by generating a precision endoxifen prediction algorithm and comprehensively review the factors that must be incorporated into the algorithm, including genetics of CYP2D6 and other pharmacogenes. A precision endoxifen algorithm could be used to validate metabolic resistance in existing tamoxifen clinical trial cohorts and could then be used to select personalized tamoxifen doses to ensure all patients achieve adequate endoxifen concentrations and maximum benefit from tamoxifen treatment. Full article
(This article belongs to the Special Issue Pharmacogenomics of Oncology Therapies)
Show Figures

Figure 1

11 pages, 3916 KB  
Brief Report
Real-Time Challenging of ERα Y537S Mutant Transcriptional Activity in Living Cells
by Manuela Cipolletti, Sara Pescatori and Filippo Acconcia
Endocrines 2021, 2(1), 54-64; https://doi.org/10.3390/endocrines2010006 - 10 Mar 2021
Cited by 6 | Viewed by 3667
Abstract
Metastatic estrogen receptor α (ERα)-expressing breast cancer (BC) occurs after prolonged patient treatment with endocrine therapy (ET) (e.g., aromatase inhibitors—AI; 4OH-tamoxifen—4OH-Tam). Often these metastatic BCs express a mutated ERα variant (e.g., Y537S), which is transcriptionally hyperactive, sustains uncontrolled proliferation, and renders tumor cells [...] Read more.
Metastatic estrogen receptor α (ERα)-expressing breast cancer (BC) occurs after prolonged patient treatment with endocrine therapy (ET) (e.g., aromatase inhibitors—AI; 4OH-tamoxifen—4OH-Tam). Often these metastatic BCs express a mutated ERα variant (e.g., Y537S), which is transcriptionally hyperactive, sustains uncontrolled proliferation, and renders tumor cells insensitive to ET drugs. Therefore, new molecules blocking hyperactive Y537S ERα mutation transcriptional activity are requested. Here we generated an MCF-7 cell line expressing the Y537S ERα mutation stably expressing an estrogen-responsive element (ERE) promoter, which activity can be monitored in living cells. Characterization of this cell line shows both hyperactive basal transcriptional activity with respect to normal MCF-7 cells, which stably express the same ERE-based promoter and a decreased effect of selective ER downregulators (SERDs) in reducing Y537S ERα mutant transcriptional activity with respect to wild type ERα transcriptional activity. Kinetic profiles of Y537S ERα mutant-based transcription produced by both drugs inducing receptor degradation and siRNA-mediated depletion of specific proteins (e.g., FOXA1 and caveolin1) reveals biphasic dynamics of the inhibition of the receptor-regulated transcriptional effects. Overall, we report a new model where to study the behavior of the Y537S ERα mutant that can be used for the identification of new targets and pathways regulating the Y537S ERα transcriptional activity. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Estrogen Signaling Pathways)
Show Figures

Figure 1

Back to TopTop