Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = 4-nitro benzyl alcohol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2942 KiB  
Article
Color-Coordinated Photocatalysis of the One-Pot Synthesis of Schiff Bases from Benzyl Alcohol and Nitro Compounds Using a Hybrid Magnetic Catalyst
by Daliane Regis Correa da Silva, Melissa Cely-Pinto and Juan C. Scaiano
Catalysts 2024, 14(9), 612; https://doi.org/10.3390/catal14090612 - 12 Sep 2024
Viewed by 1475
Abstract
The versatility and significance of imines (Schiff bases) make them highly attractive for many industrial applications. This study investigates photocatalytic routes for the one-pot synthesis of Schiff bases using alcohol and an aromatic nitro compound as reagents, rather than the more conventional amine [...] Read more.
The versatility and significance of imines (Schiff bases) make them highly attractive for many industrial applications. This study investigates photocatalytic routes for the one-pot synthesis of Schiff bases using alcohol and an aromatic nitro compound as reagents, rather than the more conventional amine and aldehyde or ketone. Utilizing photoirradiation at 370 nm with TiO2 loaded with various metals, we demonstrate the exceptional efficiency of the one-pot synthesis of Schiff bases under an inert atmosphere. Notably, the Fe3O4@TiO2 magnetic catalyst offers an excellent option for synthesizing the corresponding imine, achieving a remarkable production rate of 6.8 mmol h−1 during the first 6 h of irradiation with UVA light and reaching over 99% yield after 20 h. This success is attributed to a series of reactions involving the photocatalytic oxidation of benzyl alcohol to benzaldehyde and the simultaneous in situ reduction of nitrobenzene to aniline. The subsequent catalytic condensation of these products, facilitated by the active sites at the TiO2-metal interface, ultimately yields the desired imine. Additionally, while irradiation in the UVA region alone can photocatalyze the process, incorporating blue light (450 nm) accelerates it significantly. Dual-wavelength irradiation increased the production of the benzaldehyde to 77.9 mmol and more than doubled the Schiff base yield, from 7.5 mmol (with UVA light) to 17 mmol in 3 h of irradiation. Additionally, the reusability of the catalyst under simultaneous 450 nm and 370 nm light exposure significantly enhanced Schiff base production, which rose from 16.9 mmol to 48.9 mmol after adding fresh 0.1 M nitrobenzene for the second use. This highlights the effectiveness of color-coordinated catalysis in advancing sustainable chemistry through two-color photochemistry. The magnetic catalytic system not only demonstrates remarkable performance but also shows excellent reusability, representing a promising alternative for sustainable and efficient chemical transformations. Full article
Show Figures

Figure 1

19 pages, 6829 KiB  
Article
Efficient Dual-Function Catalyst: Palladium–Copper Nanoparticles Immobilized on Co-Cr LDH for Seamless Aerobic Oxidation of Benzyl Alcohol and Nitrobenzene Reduction
by Linah A. Alzarea, Mosaed S. Alhumaimess, Ibrahim Hotan Alsohaimi, Hassan M. A. Hassan, M. R. El-Aassar, Amr A. Essawy and Haitham Kalil
Nanomaterials 2023, 13(13), 1956; https://doi.org/10.3390/nano13131956 - 27 Jun 2023
Cited by 5 | Viewed by 2019
Abstract
Layered double hydroxides (LDHs) present exciting possibilities across various industries, ranging from catalytic applications to water remediation. By immobilizing nanoparticles, LDHs’ characteristics and functionality can be enhanced, allowing for synergetic interactions that further expand their potential uses. A simple chemical method was developed [...] Read more.
Layered double hydroxides (LDHs) present exciting possibilities across various industries, ranging from catalytic applications to water remediation. By immobilizing nanoparticles, LDHs’ characteristics and functionality can be enhanced, allowing for synergetic interactions that further expand their potential uses. A simple chemical method was developed to produce well-dispersed Pd-Cu NPs on a Co-Cr LDH support using a combination of in situ coprecipitation/hydrothermal and sol-immobilization techniques. The Pd-Cu@Co-Cr LDH catalysts was obtained, showing its catalytic activity in promoting the aerobic oxidation of alcohols and enabling the reduction of nitro-compounds through NaBH4 mediation. The physicochemical properties of the prepared catalyst were comprehensively investigated utilizing a range of analytical techniques, comprising FTIR, XRD, XPS, TGA, nitrogen adsorption isotherm, FESEM, and HRTEM-EDX. The findings showed the significance of immobilizing the bimetallic Pd-Cu nanoparticles on the Co-Cr LDH via an exceptional performance in the aerobic oxidation of benzyl alcohol (16% conversion, 99.9% selectivity to benzaldehyde) and the reduction of nitrobenzene (98.2% conversion, rate constant of 0.0921 min−1). The improved catalytic efficacy in benzyl alcohol oxidation and nitrobenzene reduction on the Pd-Cu@Co-Cr LDH catalyst is attributed to the uniform distribution and small size of the Pd-Cu NPs as active sites on the Co-Cr LDH surface. The prepared catalyst demonstrated exceptional stability during repeated runs. This study paves the way for multiple opportunities in tailoring, producing, and precisely controlling catalysts for various organic transformation reactions. Full article
Show Figures

Figure 1

18 pages, 6735 KiB  
Article
Highly Efficient Self-Assembled Activated Carbon Cloth-Templated Photocatalyst for NADH Regeneration and Photocatalytic Reduction of 4-Nitro Benzyl Alcohol
by Vaibhav Gupta, Rajesh K. Yadav, Ahmad Umar, Ahmed A. Ibrahim, Satyam Singh, Rehana Shahin, Ravindra K. Shukla, Dhanesh Tiwary, Dilip Kumar Dwivedi, Alok Kumar Singh, Atresh Kumar Singh and Sotirios Baskoutas
Catalysts 2023, 13(4), 666; https://doi.org/10.3390/catal13040666 - 29 Mar 2023
Cited by 7 | Viewed by 3618
Abstract
This manuscript emphasizes how structural assembling can facilitate the generation of solar chemicals and the synthesis of fine chemicals under solar light, which is a challenging task via a photocatalytic pathway. Solar energy utilization for pollution prevention through the reduction of organic chemicals [...] Read more.
This manuscript emphasizes how structural assembling can facilitate the generation of solar chemicals and the synthesis of fine chemicals under solar light, which is a challenging task via a photocatalytic pathway. Solar energy utilization for pollution prevention through the reduction of organic chemicals is one of the most challenging tasks. In this field, a metal-based photocatalyst is an optional technique but has some drawbacks, such as low efficiency, a toxic nature, poor yield of photocatalytic products, and it is expensive. A metal-free activated carbon cloth (ACC)–templated photocatalyst is an alternative path to minimize these drawbacks. Herein, we design the synthesis and development of a metal-free self-assembled eriochrome cyanine R (EC-R) based ACC photocatalyst (EC-R@ACC), which has a higher molar extinction coefficient and an appropriate optical band gap in the visible region. The EC-R@ACC photocatalyst functions in a highly effective manner for the photocatalytic reduction of 4-nitro benzyl alcohol (4-NBA) into 4-amino benzyl alcohol (4-ABA) with a yield of 96% in 12 h. The synthesized EC-R@ACC photocatalyst also regenerates reduced forms of nicotinamide adenine dinucleotide (NADH) cofactor with a yield of 76.9% in 2 h. The calculated turnover number (TON) of the EC-R@ACC photocatalyst for the reduction of 4-nitrobenzyl alcohol is 1.769 × 1019 molecules. The present research sets a new benchmark example in the area of organic transformation and artificial photocatalysis. Full article
Show Figures

Figure 1

Back to TopTop