Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = 4-hydroxypanduratin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1260 KB  
Article
Vasorelaxant Effect of Boesenbergia rotunda and Its Active Ingredients on an Isolated Coronary Artery
by Deepak Adhikari, Dal-Seong Gong, Se Hee Oh, Eun Hee Sung, Seung On Lee, Dong-Wook Kim, Min-Ho Oak and Hyun Jung Kim
Plants 2020, 9(12), 1688; https://doi.org/10.3390/plants9121688 - 1 Dec 2020
Cited by 21 | Viewed by 5026
Abstract
Cardiovascular diseases are a major cause of death in developed countries. The regulation of vascular tone is a major approach to prevent and ameliorate vascular diseases. As part of our ongoing screening for cardioprotective natural compounds, we investigated the vasorelaxant effect of rhizomes [...] Read more.
Cardiovascular diseases are a major cause of death in developed countries. The regulation of vascular tone is a major approach to prevent and ameliorate vascular diseases. As part of our ongoing screening for cardioprotective natural compounds, we investigated the vasorelaxant effect of rhizomes from Boesenbergia rotunda (L.) Mansf. [Boesenbergia pandurata (Roxb.) Schltr.] used as a spice and herbal medicine in Asian countries. The methanol extract of B. rotunda rhizomes (BRE) exhibited significant vasorelaxation effects ex vivo at EC50 values of 13.4 ± 6.1 μg/mL and 40.9 ± 7.9 μg/mL, respectively, with and without endothelium in the porcine coronary artery ring. The intrinsic mechanism was evaluated by treating with specific inhibitors or activators that typically affect vascular reactivity. The results suggested that BRE induced relaxation in the coronary artery rings via an endothelium-dependent pathway involving NO-cGMP, and also via an endothelium-independent pathway involving the blockade of Ca2+ channels. Vasorelaxant principles in BRE were identified by subsequent chromatographic methods, which revealed that flavonoids regulate vasorelaxant activity in BRE. One of the flavonoids was a Diels-Alder type adduct, 4-hydroxypanduratin A, which showed the most potent vasorelaxant effect on porcine coronary artery with an EC50 of 17.8 ± 2.5 μM. Our results suggest that rhizomes of B. rotunda might be of interest as herbal medicine against cardiovascular diseases. Full article
Show Figures

Figure 1

12 pages, 438 KB  
Article
Design of New Competitive Dengue Ns2b/Ns3 Protease Inhibitors—A Computational Approach
by Neni Frimayanti, Chin Fei Chee, Sharifuddin M. Zain and Noorsaadah Abd. Rahman
Int. J. Mol. Sci. 2011, 12(2), 1089-1100; https://doi.org/10.3390/ijms12021089 - 9 Feb 2011
Cited by 48 | Viewed by 10902
Abstract
Dengue is a serious disease which has become a global health burden in the last decade. Currently, there are no approved vaccines or antiviral therapies to combat the disease. The increasing spread and severity of the dengue virus infection emphasizes the importance of [...] Read more.
Dengue is a serious disease which has become a global health burden in the last decade. Currently, there are no approved vaccines or antiviral therapies to combat the disease. The increasing spread and severity of the dengue virus infection emphasizes the importance of drug discovery strategies that could efficiently and cost-effectively identify antiviral drug leads for development into potent drugs. To this effect, several computational approaches were applied in this work. Initially molecular docking studies of reference ligands to the DEN2 NS2B/NS3 serine protease were carried out. These reference ligands consist of reported competitive inhibitors extracted from Boesenbergia rotunda (i.e., 4-hydroxypanduratin A and panduratin A) and three other synthesized panduratin A derivative compounds (i.e., 246DA, 2446DA and 20H46DA). The design of new lead inhibitors was carried out in two stages. In the first stage, the enzyme complexed to the reference ligands was minimized and their complexation energies (i.e., sum of interaction energy and binding energy) were computed. New compounds as potential dengue inhibitors were then designed by putting various substituents successively on the benzyl ring A of the reference molecule. These substituted benzyl compounds were then computed for their enzyme-ligand complexation energies. New enzyme-ligand complexes, exhibiting the lowest complexation energies and closest to the computed energy for the reference compounds, were then chosen for the next stage manipulation and design, which involved substituting positions 4 and 5 of the benzyl ring A (positions 3 and 4 for 2446DA) with various substituents. Full article
(This article belongs to the Section Physical Chemistry, Theoretical and Computational Chemistry)
Show Figures

Back to TopTop