Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (1)

Search Parameters:
Keywords = 3rd class combination waveform

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2740 KB  
Article
An Optimal Operation Strategy for Surge Protective Devices in Li-Ion Based Energy Storage Systems
by Yun-Ho Kim, Hyun-Sang You, Min-Haeng Lee, Seong-Eun Rho, Se-Jin Kim and Dae-Seok Rho
Electronics 2025, 14(18), 3629; https://doi.org/10.3390/electronics14183629 - 13 Sep 2025
Viewed by 683
Abstract
This paper deals with an optimal operation method for surge protective devices (SPDs) to calculate the maximum continuous operating voltage (UC) and the voltage protection level (UP) by considering the sum of the voltage protection level and the dielectric [...] Read more.
This paper deals with an optimal operation method for surge protective devices (SPDs) to calculate the maximum continuous operating voltage (UC) and the voltage protection level (UP) by considering the sum of the voltage protection level and the dielectric continuous voltage limit of surge protective devices in order to effectively protect energy storage system (ESS) from switching and lightning surges. This paper also implements a test device for SPDs in ESSs based on the concept of a lightning electromagnetic surge protection measurement system (LPMS) by combining an SPD coordinated with spatial shielding with an ESS configuration. Here, the test device for the SPD in the ESS is composed of a power distribution unit (PDU), uninterruptible power supply (UPS), and a lightning electromagnetic pulse (LEMP) protection device, which combines two units of SPDs and disconnection switches (DSs) connected in parallel with two units of main circuit breakers (MCBs) and noise cut transformers (NCTs) connected in series. From the test results based on the proposed optimal operation method and test device, it is clear that the residual voltage with a third-class combination waveform can be kept within 1.5 kV of the surge voltage limit in all test scenarios, and it is confirmed that the proposed test device for SPDs can protect ESSs from switching and lightning surges. Therefore, it is confirmed that the SPD tested using the proposed method can effectively reduce switching and lightning surges, while the existing SPDs installed in ESS sites cannot protect ESSs from such surges. Full article
Show Figures

Graphical abstract

Back to TopTop