Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = 3,5–dibromo–L–tyrosine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2614 KiB  
Article
Unique Use of Dibromo–L–Tyrosine Ligand in Building of Cu(II) Coordination Polymer—Experimental and Theoretical Investigations
by Agnieszka Wojciechowska, Jan Janczak, Tomasz Rojek, Muhammad Ashfaq, Magdalena Malik, Natasza Trzęsowska, Rafał Wysokiński and Julia Jezierska
Molecules 2024, 29(11), 2709; https://doi.org/10.3390/molecules29112709 - 6 Jun 2024
Cited by 13 | Viewed by 1525
Abstract
Although the crystals of coordination polymer {[CuCl(μ-O,O’-L-Br2Tyr)]}n (1) (L-Br2Tyr = 3,5-dibromo-L-tyrosine) were formed under basic conditions, crystallographic studies revealed that the OH group of the ligand remained protonated. Two adjacent [CuCl(L-Br2Tyr)] monomers, bridged by the [...] Read more.
Although the crystals of coordination polymer {[CuCl(μ-O,O’-L-Br2Tyr)]}n (1) (L-Br2Tyr = 3,5-dibromo-L-tyrosine) were formed under basic conditions, crystallographic studies revealed that the OH group of the ligand remained protonated. Two adjacent [CuCl(L-Br2Tyr)] monomers, bridged by the carboxylate group of the ligand in the syn-anti bidentate bridging mode, are differently oriented to form a polymeric chain; this specific bridging was detected also by FT-IR and EPR spectroscopy. Each Cu(II) ion in polymeric compound 1 is coordinated in the xy plane by the amino nitrogen and carboxyl oxygen of the parent ligand and the oxygen of the carboxyl group from the symmetry related ligand of the adjacent [Cu(L-Br2Tyr)Cl] monomer, as well as an independent chlorine ion. In addition, the Cu(II) ion in the polymer chain participates in long-distance intermolecular contacts with the oxygen and bromine atoms of the ligands located in the adjacent chains; these intramolecular contacts were also supported by NCI and NBO quantum chemical calculations and Hirshfeld surface analysis. The resulting elongated octahedral geometry based on the [CuCl(L-Br2Tyr)] monomer has a lower than axial symmetry, which is also reflected in the symmetry of the calculated molecular EPR g tensor. Consequently, the components of the d-d band obtained by analysis of the NIR-VIS-UV spectrum were assigned to the corresponding electronic transitions. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Graphical abstract

17 pages, 1918 KiB  
Article
Volatile Secondary Metabolites with Potent Antidiabetic Activity from the Roots of Prangos pabularia Lindl.—Computational and Experimental Investigations
by Sodik Numonov, Farukh S. Sharopov, Sunbula Atolikhshoeva, Abduahad Safomuddin, Mahinur Bakri, William N. Setzer, Azizullo Musoev, Mizhgona Sharofova, Maidina Habasi and Haji Akber Aisa
Appl. Sci. 2019, 9(11), 2362; https://doi.org/10.3390/app9112362 - 10 Jun 2019
Cited by 15 | Viewed by 4402
Abstract
(1) Background: Almost 500 million people worldwide are suffering from diabetes. Since ancient times, humans have used medicinal plants for the treatment of diabetes. Medicinal plants continue to serve as natural sources for the discovery of antidiabetic compounds. Prangos pabularia Lindl. is a [...] Read more.
(1) Background: Almost 500 million people worldwide are suffering from diabetes. Since ancient times, humans have used medicinal plants for the treatment of diabetes. Medicinal plants continue to serve as natural sources for the discovery of antidiabetic compounds. Prangos pabularia Lindl. is a widely distributed herb with large reserves in Tajikistan. Its roots and fruits have been used in Tajik traditional medicine. To our best knowledge, there are no previously published reports concerning the antidiabetic activity and the chemical composition of the essential oil obtained from roots of P. pabularia. (2) Methods: The volatile secondary metabolites were obtained by hydrodistillation from the underground parts of P. pabularia growing wild in Tajikistan and were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Protein tyrosine phosphatase 1B (PTP-1B) inhibition assay and molecular docking analysis were carried out to evaluate the potential antidiabetic activity of the P. pabularia essential oil. (3) Results: The main constituents of the volatile oil of P. pabularia were 5-pentylcyclohexa-1,3-diene (44.6%), menthone (12.6%), 1-tridecyne (10.9%), and osthole (6.0%). PTP-1B inhibition assay of the essential oil and osthole resulted in significant inhibitory activity with an IC50 value of 0.06 ± 0.01 and 0.93 ± 0.1 μg/mL. Molecular docking analysis suggests volatile compounds such as osthole inhibit PTP-1B, and the results are also in agreement with experimental investigations. (4) Conclusions: Volatile secondary metabolites and the pure isolated compound (osthole) from the roots of P. pabularia exhibited potent antidiabetic activity, twenty-five and nearly two times more than the positive control (3-(3,5-dibromo-4-hydroxybenzoyl)-2-ethylbenzofuran-6-sulfonic acid-(4-(thiazol-2-ylsulfamyl)-phenyl)-amide)) with an IC50 value of 1.46 ± 0.4 μg/mL, respectively. Full article
(This article belongs to the Special Issue Biological Activity and Applications of Natural Compounds)
Show Figures

Graphical abstract

13 pages, 662 KiB  
Article
HPN, a Synthetic Analogue of Bromophenol from Red Alga Rhodomela confervoides: Synthesis and Anti-Diabetic Effects in C57BL/KsJ-db/db Mice
by Dayong Shi, Shuju Guo, Bo Jiang, Chao Guo, Tao Wang, Luyong Zhang and Jingya Li
Mar. Drugs 2013, 11(2), 350-362; https://doi.org/10.3390/md11020350 - 30 Jan 2013
Cited by 49 | Viewed by 10367
Abstract
3,4-Dibromo-5-(2-bromo-3,4-dihydroxy-6-(isopropoxymethyl)benzyl)benzene-1,2-diol (HPN) is a synthetic analogue of 3,4-dibromo-5-(2-bromo-3,4-dihydroxy-6-(ethoxymethyl)benzyl)benzene-1,2-diol (BPN), which is isolated from marine red alga Rhodomela confervoides with potent protein tyrosine phosphatase 1B (PTP1B) inhibition (IC50 = 0.84 μmol/L). The in vitro assay showed that HPN exhibited enhanced inhibitory activity against [...] Read more.
3,4-Dibromo-5-(2-bromo-3,4-dihydroxy-6-(isopropoxymethyl)benzyl)benzene-1,2-diol (HPN) is a synthetic analogue of 3,4-dibromo-5-(2-bromo-3,4-dihydroxy-6-(ethoxymethyl)benzyl)benzene-1,2-diol (BPN), which is isolated from marine red alga Rhodomela confervoides with potent protein tyrosine phosphatase 1B (PTP1B) inhibition (IC50 = 0.84 μmol/L). The in vitro assay showed that HPN exhibited enhanced inhibitory activity against PTP1B with IC50 0.63 μmol/L and high selectivity against other PTPs (T cell protein tyrosine phosphatase (TCPTP), leucocyte antigen-related tyrosine phosphatase (LAR), Src homology 2-containing protein tyrosine phosphatase-1 (SHP-1) and SHP-2). The results of antihyperglycemic activity using db/db mouse model demonstrated that HPN significantly decreased plasma glucose (P < 0.01) after eight weeks treatment period. HPN lowered serum triglycerides and total cholesterol concentration in a dose-dependent manner. Besides, both of the high and medium dose groups of HPN remarkably decreased HbA1c levels (P < 0.05). HPN in the high dose group markedly lowered the insulin level compared to the model group (P < 0.05), whereas the effects were less potent than the positive drug rosiglitazone. Western blotting results showed that HPN decreased PTP1B levels in pancreatic tissue. Last but not least, the results of an intraperitoneal glucose tolerance test in Sprague–Dawley rats indicate that HPN have a similar antihyperglycemic activity as rosiglitazone. HPN therefore have potential for development as treatments for Type 2 diabetes. Full article
(This article belongs to the Special Issue Marine Algae)
Show Figures

Figure 1

Back to TopTop