Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = 2023 Mw 6.0 Jishishan earthquake

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3003 KiB  
Article
Fault Geometry and Slip Distribution of the 2023 Jishishan Earthquake Based on Sentinel-1A and ALOS-2 Data
by Kaifeng Ma, Yang Liu, Qingfeng Hu, Jiuyuan Yang and Limei Wang
Remote Sens. 2025, 17(13), 2310; https://doi.org/10.3390/rs17132310 - 5 Jul 2025
Viewed by 413
Abstract
On 18 December 2023, a Mw 6.2 earthquake occurred in close proximity to Jishishan County, located on the northeastern edge of the Qinghai–Tibet Plateau. The event struck the structural intersection of the Haiyuan fault, Lajishan fault, and West Qinling fault, providing empirical [...] Read more.
On 18 December 2023, a Mw 6.2 earthquake occurred in close proximity to Jishishan County, located on the northeastern edge of the Qinghai–Tibet Plateau. The event struck the structural intersection of the Haiyuan fault, Lajishan fault, and West Qinling fault, providing empirical evidence for investigating the crustal compression mechanisms associated with the northeastward expansion of the Qinghai–Tibet Plateau. In this study, we successfully acquired a high-resolution coseismic deformation field of the earthquake by employing interferometric synthetic aperture radar (InSAR) technology. This was accomplished through the analysis of image data obtained from both the ascending and descending orbits of the Sentinel-1A satellite, as well as from the ascending orbit of the ALOS-2 satellite. Our findings indicate that the coseismic deformation is predominantly localized around the Lajishan fault zone, without leading to the development of a surface rupture zone. The maximum deformations recorded from the Sentinel-1A ascending and descending datasets are 7.5 cm and 7.7 cm, respectively, while the maximum deformation observed from the ALOS-2 ascending data reaches 10 cm. Geodetic inversion confirms that the seismogenic structure is a northeast-dipping thrust fault. The geometric parameters indicate a strike of 313° and a dip angle of 50°. The slip distribution model reveals that the rupture depth predominantly ranges between 5.7 and 15 km, with a maximum displacement of 0.47 m occurring at a depth of 9.6 km. By integrating the coseismic slip distribution and aftershock relocation, this study comprehensively elucidates the stress coupling mechanism between the mainshock and its subsequent aftershock sequence. Quantitative analysis indicates that aftershocks are primarily located within the stress enhancement zone, with an increase in stress ranging from 0.12 to 0.30 bar. It is crucial to highlight that the structural units, including the western segment of the northern margin fault of West Qinling, the eastern segment of the Daotanghe fault, the eastern segment of the Linxia fault, and both the northern and southern segment of Lajishan fault, exhibit characteristics indicative of continuous stress loading. This observation suggests a potential risk for fractures in these areas. Full article
Show Figures

Figure 1

18 pages, 42329 KiB  
Article
Coseismic Deformation Monitoring and Seismogenic Fault Parameter Inversion Using Lutan-1 Data: A Comparative Analysis with Sentinel-1A Data
by Xu Li, Junhuan Peng, Yueze Zheng, Xue Chen, Yun Peng, Xu Ma, Yuhan Su, Mengyao Shi, Xiaoman Qi, Xinwei Jiang and Chenyu Wang
Remote Sens. 2025, 17(5), 894; https://doi.org/10.3390/rs17050894 - 3 Mar 2025
Viewed by 955
Abstract
Lutan-1 is the first L-band SAR satellite launched by China with the core mission of geohazard monitoring, but few studies have been conducted to apply it in the field of earthquakes. In this paper, the capability of Lutan-1 data in coseismic deformation analysis [...] Read more.
Lutan-1 is the first L-band SAR satellite launched by China with the core mission of geohazard monitoring, but few studies have been conducted to apply it in the field of earthquakes. In this paper, the capability of Lutan-1 data in coseismic deformation analysis and seismogenic fault parameter inversion was discussed by taking the 2023 Mw6.0 Jishishan earthquake as an example. Firstly, we utilized Lutan-1 data to acquire the coseismic deformation field of the Jishishan earthquake. Subsequently, the seismogenic fault parameter and slip distribution were inverted using both uniform slip and distributed slip models. Finally, a comprehensive comparison was conducted with Sentinel-1 data in terms of the coseismic deformation field, seismic source parameters, and coherence. The comparative results demonstrate that the coseismic deformation and seismogenic fault parameter inversion derived from Lutan-1 data are consistent with those obtained from Sentinel-1 data. Moreover, Lutan-1 data exhibit superior image quality and better coherence, confirming the effectiveness and superiority of Lutan-1 data for coseismic deformation and seismogenic fault analysis. This study provides a theoretical foundation for the application of Lutan-1 in the field of earthquake disaster monitoring. Full article
(This article belongs to the Special Issue Synthetic Aperture Radar Interferometry Symposium 2024)
Show Figures

Figure 1

12 pages, 7370 KiB  
Communication
Fault Kinematics of the 2023 Mw 6.0 Jishishan Earthquake, China, Characterized by Interferometric Synthetic Aperture Radar Observations
by Xing Huang, Yanchuan Li, Xinjian Shan, Meijiao Zhong, Xuening Wang and Zhiyu Gao
Remote Sens. 2024, 16(10), 1746; https://doi.org/10.3390/rs16101746 - 15 May 2024
Cited by 13 | Viewed by 2092
Abstract
Characterizing the coseismic slip behaviors of earthquakes could offer a better understanding of regional crustal deformation and future seismic potential assessments. On 18 December 2023, an Mw 6.0 earthquake occurred on the Lajishan–Jishishan fault system (LJFS) in the northeastern Tibetan Plateau, causing serious [...] Read more.
Characterizing the coseismic slip behaviors of earthquakes could offer a better understanding of regional crustal deformation and future seismic potential assessments. On 18 December 2023, an Mw 6.0 earthquake occurred on the Lajishan–Jishishan fault system (LJFS) in the northeastern Tibetan Plateau, causing serious damage and casualties. The seismogenic fault hosting this earthquake is not well constrained, as no surface rupture was identified in the field. To address this issue, in this study, we use Interferometric Synthetic Aperture Radar (InSAR) data to investigate the coseismic surface deformation of this earthquake and invert both ascending and descending line-of-sight observations to probe the seismogenic fault and its slip characteristics. The InSAR observations show up to ~6 cm surface uplift caused by the Jishishan earthquake, which is consistent with the thrust-dominated focal mechanism. A Bayesian-based dislocation modeling indicates that two fault models, with eastern and western dip orientations, could reasonably fit the InSAR observations. By calculating the coseismic Coulomb failure stress changes (∆CFS) induced by both fault models, we find that the east-dipping fault scenario could reasonably explain the aftershock distributions under the framework of stress triggering, while the west-dipping fault scenario produced a negative ∆CFS in the region of dense aftershocks. Integrating regional geological structures, we suggest that the seismogenic fault of the Jishishan earthquake, which strikes NNE with a dip of 56° to the east, may be either the Jishishan western margin fault or a secondary buried branch. The optimal finite-fault slip modeling shows that the coseismic slip was dominated by reverse slip and confined to a depth range between ~5 and 15 km. The released seismic moment is 1.61 × 1018 N·m, which is equivalent to an Mw 6.07 earthquake. While the Jishishan earthquake ruptured a fault segment of approximately 20 km, it only released a small part of the seismic moment that was accumulated along the 220 km long Lajishan–Jishishan fault system. The remaining segments of the Lajishan–Jishishan fault system still have the capability to generate moderate-to-large earthquakes in the future. Full article
(This article belongs to the Special Issue Monitoring Geohazard from Synthetic Aperture Radar Interferometry)
Show Figures

Figure 1

Back to TopTop