Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = 2-aminoimidazolone alkaloids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2576 KiB  
Article
An Aminopyrimidone and Aminoimidazoles Alkaloids from the Rodrigues Calcareous Marine Sponge Ernsta naturalis
by Pierre-Eric Campos, Gaëtan Herbette, Laetitia Fougère, Patricia Clerc, Florent Tintillier, Nicole J. de Voogd, Géraldine Le Goff, Jamal Ouazzani and Anne Gauvin-Bialecki
Mar. Drugs 2022, 20(10), 637; https://doi.org/10.3390/md20100637 - 13 Oct 2022
Cited by 6 | Viewed by 3033
Abstract
A chemical study of the CH2Cl2−MeOH (1:1) extract from the sponge Ernsta naturalis collected in Rodrigues (Mauritius) based on a molecular networking dereplication strategy highlighted one novel aminopyrimidone alkaloid compound, ernstine A (1), seven new aminoimidazole alkaloid [...] Read more.
A chemical study of the CH2Cl2−MeOH (1:1) extract from the sponge Ernsta naturalis collected in Rodrigues (Mauritius) based on a molecular networking dereplication strategy highlighted one novel aminopyrimidone alkaloid compound, ernstine A (1), seven new aminoimidazole alkaloid compounds, phorbatopsins D–E (2, 3), calcaridine C (4), naamines H–I (5, 7), naamidines J–K (6, 8), along with the known thymidine (9). Their structures were established by spectroscopic analysis (1D and 2D NMR spectra and HRESIMS data). To improve the investigation of this unstudied calcareous marine sponge, a metabolomic study by molecular networking was conducted. The isolated molecules are distributed in two clusters of interest. Naamine and naamidine derivatives are grouped together with ernstine in the first cluster of twenty-three molecules. Phorbatopsin derivatives and calcaridine C are grouped together in a cluster of twenty-one molecules. Interpretation of the MS/MS spectra of other compounds of these clusters with structural features close to the isolated ones allowed us to propose a structural hypothesis for 16 compounds, 5 known and 11 potentially new. Full article
(This article belongs to the Special Issue Heterocyclic Compounds from Marine Organisms)
Show Figures

Graphical abstract

8 pages, 971 KiB  
Article
Agesasines A and B, Bromopyrrole Alkaloids from Marine Sponges Agelas spp
by Sanghoon Lee, Naonobu Tanaka, Sakura Takahashi, Daisuke Tsuji, Sang-Yong Kim, Mareshige Kojoma, Kohji Itoh, Jun’ichi Kobayashi and Yoshiki Kashiwada
Mar. Drugs 2020, 18(9), 455; https://doi.org/10.3390/md18090455 - 30 Aug 2020
Cited by 14 | Viewed by 3335
Abstract
Exploration for specialized metabolites of Okinawan marine sponges Agelas spp. resulted in the isolation of five new bromopyrrole alkaloids, agesasines A (1) and B (2), 9-hydroxydihydrodispacamide (3), 9-hydroxydihydrooroidin (4), and 9E-keramadine (5 [...] Read more.
Exploration for specialized metabolites of Okinawan marine sponges Agelas spp. resulted in the isolation of five new bromopyrrole alkaloids, agesasines A (1) and B (2), 9-hydroxydihydrodispacamide (3), 9-hydroxydihydrooroidin (4), and 9E-keramadine (5). Their structures were elucidated on the basis of spectroscopic analyses. Agesasines A (1) and B (2) were assigned as rare bromopyrrole alkaloids lacking an aminoimidazole moiety, while 35 were elucidated to be linear bromopyrrole alkaloids with either aminoimidazolone, aminoimidazole, or N-methylated aminoimidazole moieties. Full article
(This article belongs to the Special Issue Bioactive Marine Heterocyclic Compounds)
Show Figures

Figure 1

15 pages, 1869 KiB  
Article
Marine-Derived 2-Aminoimidazolone Alkaloids. Leucettamine B-Related Polyandrocarpamines Inhibit Mammalian and Protozoan DYRK & CLK Kinases
by Nadège Loaëc, Eletta Attanasio, Benoît Villiers, Emilie Durieu, Tania Tahtouh, Morgane Cam, Rohan A. Davis, Aline Alencar, Mélanie Roué, Marie-Lise Bourguet-Kondracki, Peter Proksch, Emmanuelle Limanton, Solène Guiheneuf, François Carreaux, Jean-Pierre Bazureau, Michelle Klautau and Laurent Meijer
Mar. Drugs 2017, 15(10), 316; https://doi.org/10.3390/md15100316 - 17 Oct 2017
Cited by 46 | Viewed by 6562
Abstract
A large diversity of 2-aminoimidazolone alkaloids is produced by various marine invertebrates, especially by the marine Calcareous sponges Leucetta and Clathrina. The phylogeny of these sponges and the wide scope of 2-aminoimidazolone alkaloids they produce are reviewed in this article. The origin [...] Read more.
A large diversity of 2-aminoimidazolone alkaloids is produced by various marine invertebrates, especially by the marine Calcareous sponges Leucetta and Clathrina. The phylogeny of these sponges and the wide scope of 2-aminoimidazolone alkaloids they produce are reviewed in this article. The origin (invertebrate cells, associated microorganisms, or filtered plankton), physiological functions, and natural molecular targets of these alkaloids are largely unknown. Following the identification of leucettamine B as an inhibitor of selected protein kinases, we synthesized a family of analogues, collectively named leucettines, as potent inhibitors of DYRKs (dual-specificity, tyrosine phosphorylation regulated kinases) and CLKs (cdc2-like kinases) and potential pharmacological leads for the treatment of several diseases, including Alzheimer’s disease and Down syndrome. We assembled a small library of marine sponge- and ascidian-derived 2-aminoimidazolone alkaloids, along with several synthetic analogues, and tested them on a panel of mammalian and protozoan kinases. Polyandrocarpamines A and B were found to be potent and selective inhibitors of DYRKs and CLKs. They inhibited cyclin D1 phosphorylation on a DYRK1A phosphosite in cultured cells. 2-Aminoimidazolones thus represent a promising chemical scaffold for the design of potential therapeutic drug candidates acting as specific inhibitors of disease-relevant kinases, and possibly other disease-relevant targets. Full article
(This article belongs to the Special Issue Progress on Marine Natural Products as Lead Compounds)
Show Figures

Graphical abstract

Back to TopTop