Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = 2,5-dimethylcelecoxib (DMC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6102 KiB  
Article
The Anti-Glioblastoma Effects of Novel Liposomal Formulations Loaded with Cannabidiol, Celecoxib, and 2,5-Dimethylcelecoxib
by Anna Rybarczyk, Aleksandra Majchrzak-Celińska, Ludwika Piwowarczyk and Violetta Krajka-Kuźniak
Pharmaceutics 2025, 17(8), 1031; https://doi.org/10.3390/pharmaceutics17081031 - 8 Aug 2025
Viewed by 329
Abstract
Background/Objectives: Glioblastoma multiforme (GBM) therapy efficacy remains limited due to the poor blood-brain barrier-penetrating power of drugs as well as dysregulated cellular signaling pathways of tumor cells leading to drug resistance. Novel drug delivery systems such as liposome-based nanoformulations improve the bioavailability [...] Read more.
Background/Objectives: Glioblastoma multiforme (GBM) therapy efficacy remains limited due to the poor blood-brain barrier-penetrating power of drugs as well as dysregulated cellular signaling pathways of tumor cells leading to drug resistance. Novel drug delivery systems such as liposome-based nanoformulations improve the bioavailability and stability of water-insoluble drugs, while co-delivery of two anti-cancer compounds can further increase their anti-tumor effectiveness due to synergistic effects. Thus, the aim of this study was to obtain liposomal nanoformulations encapsulating cannabidiol (CBD), celecoxib (CELE), and 2,5-dimethylcelecoxib (DMC) and their combinations and to verify their anti-GBM properties. Methods: Five liposomal nanoformulations were obtained using a modified thin-film hydration technique. Two GBM cell lines and non-cancerous astrocytes were used for the biological evaluation of the tested nanoformulations. The cytotoxicity experiments were performed using the MTT assay, whereas flow cytometry-based analysis assessed the effect of the liposomes on apoptosis, cell cycle distribution, and oxidative stress. To determine the impact of the tested nanoformulations on Nrf2, Wnt/β-catenin, and NF-κB signaling pathways, qPCR, Western blot and ELISA techniques were used. Results: The findings of this study demonstrate that liposomal nanoformulations containing CBD, CELE, and DMC exhibit significant anti-GBM activity, particularly through the induction of apoptosis and oxidative stress and modulation of the key signaling pathways. Although no clear synergistic/additive effects were observed between CBD and CELE or DMC when co-loaded in nanoformulations, the combination of CBD and CELE effectively suppressed Wnt/β-catenin and NF-κB signaling and activated the Nrf2 pathway. These results support the therapeutic potential of liposome-based co-delivery of CBD and CELE in GBM therapy. However, further in vivo studies are warranted to determine these nanoformulations’ translational relevance and clinical applicability. Full article
Show Figures

Graphical abstract

25 pages, 1860 KiB  
Article
Non-Steroidal Anti-Inflammatory Drugs Increase Cisplatin, Paclitaxel, and Doxorubicin Efficacy against Human Cervix Cancer Cells
by Diana Xochiquetzal Robledo-Cadena, Juan Carlos Gallardo-Pérez, Víctor Dávila-Borja, Silvia Cecilia Pacheco-Velázquez, Javier Alejandro Belmont-Díaz, Stephen John Ralph, Betsy Alejandra Blanco-Carpintero, Rafael Moreno-Sánchez and Sara Rodríguez-Enríquez
Pharmaceuticals 2020, 13(12), 463; https://doi.org/10.3390/ph13120463 - 15 Dec 2020
Cited by 35 | Viewed by 5651
Abstract
This study shows that the non-steroidal anti-inflammatory drug (NSAID) celecoxib and its non-cyclooxygenase-2 (COX2) analogue dimethylcelecoxib (DMC) exert a potent inhibitory effect on the growth of human cervix HeLa multi-cellular tumor spheroids (MCTS) when added either at the beginning (“preventive protocol”; IC50 [...] Read more.
This study shows that the non-steroidal anti-inflammatory drug (NSAID) celecoxib and its non-cyclooxygenase-2 (COX2) analogue dimethylcelecoxib (DMC) exert a potent inhibitory effect on the growth of human cervix HeLa multi-cellular tumor spheroids (MCTS) when added either at the beginning (“preventive protocol”; IC50 = 1 ± 0.3 nM for celecoxib and 10 ± 2 nM for DMC) or after spheroid formation (“curative protocol”; IC50 = 7.5 ± 2 µM for celecoxib and 32 ± 10 µM for DMC). These NSAID IC50 values were significantly lower than those attained in bidimensional HeLa cells (IC50 = 55 ± 9 µM celecoxib and 48 ± 2 µM DMC) and bidimensional non-cancer cell cultures (3T3 fibroblasts and MCF-10A mammary gland cells with IC50 from 69 to >100 µM, after 24 h). The copper-based drug casiopeina II-gly showed similar potency against HeLa MCTS. Synergism analysis showed that celecoxib, DMC, and casiopeinaII-gly at sub-IC50 doses increased the potency of cisplatin, paclitaxel, and doxorubicin to hinder HeLa cell proliferation through a significant abolishment of oxidative phosphorylation in bidimensional cultures, with no apparent effect on non-cancer cells (therapeutic index >3.6). Similar results were attained with bidimensional human cervix cancer SiHa and human glioblastoma U373 cell cultures. In HeLa MCTS, celecoxib, DMC and casiopeina II-gly increased cisplatin toxicity by 41–85%. These observations indicated that celecoxib and DMC used as adjuvant therapy in combination with canonical anti-cancer drugs may provide more effective alternatives for cancer treatment. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

Back to TopTop