Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = 2,3-dihydro-imidazopyridine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3292 KB  
Article
Design, Synthesis, Biological Evaluation, and Molecular Dynamics Simulation of Influenza Polymerase PB2 Inhibitors
by Xinhong Li, Yijie Xu, Wei Li, Jinjing Che, Xu Zhao, Ruyuan Cao, Xingzhou Li and Song Li
Molecules 2023, 28(4), 1849; https://doi.org/10.3390/molecules28041849 - 15 Feb 2023
Cited by 10 | Viewed by 4064
Abstract
The PB2 subunit of the influenza RNA-dependent RNA polymerase (RdRp) has been identified as a promising target for the treatment of influenza. To expand the chemical space of the known influenza polymerase PB2 inhibitor–pimodivir (formerly VX-787) and improve its pharmacokinetic profile, two pimodivir [...] Read more.
The PB2 subunit of the influenza RNA-dependent RNA polymerase (RdRp) has been identified as a promising target for the treatment of influenza. To expand the chemical space of the known influenza polymerase PB2 inhibitor–pimodivir (formerly VX-787) and improve its pharmacokinetic profile, two pimodivir analogs containing 2,3-dihydro-imidazopyridine fragment (comp. I and comp. II) were designed, synthesized, and evaluated for anti-influenza virus activity. In the cytopathic effect (CPE) inhibition assay, comp. I and comp. II showed IC50 values of 0.07 and 0.09 μM for A/Puerto Rico/8/34 (H1N1) and 0.04 and 0.07 μM for A/Hong Kong/8/68 (H3N2), respectively. Protein-binding affinity assay results showed a concentration-dependent association and dissociation pattern, with KD values of 1.398 and 1.670 μM, respectively. In vitro metabolic stability assays showed that comp. I and comp. II exhibited good stability to liver microsomes and considerably less sensitivity to aldehyde oxidase compared to pimodivir. The binding modes of comp. I and comp. II were similar to those of VX-787; however, comp. I and comp. II had lower structural adaptability to PB2 than VX-787. Our results provide helpful information regarding the structure–activity relationship for the design of novel PB2 inhibitors and a reference for the development of drugs containing 2,3-dihydro-imidazopyridine fragments. Full article
Show Figures

Figure 1

20 pages, 3702 KB  
Article
De Novo Design of Imidazopyridine-Tethered Pyrazolines That Target Phosphorylation of STAT3 in Human Breast Cancer Cells
by Akshay Ravish, Rashmi Shivakumar, Zhang Xi, Min Hee Yang, Ji-Rui Yang, Ananda Swamynayaka, Omantheswara Nagaraja, Mahendra Madegowda, Arunachalam Chinnathambi, Sulaiman Ali Alharbi, Vijay Pandey, Gautam Sethi, Kwang Seok Ahn, Peter E. Lobie and Basappa Basappa
Bioengineering 2023, 10(2), 159; https://doi.org/10.3390/bioengineering10020159 - 24 Jan 2023
Cited by 10 | Viewed by 2910
Abstract
In breast cancer (BC), STAT3 is hyperactivated. This study explored the design of imidazopyridine-tethered pyrazolines as a de novo drug strategy for inhibiting STAT3 phosphorylation in human BC cells. This involved the synthesis and characterization of two series of compounds namely, 1-(3-(2,6-dimethylimidazo [1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazol-1-yl)-2-(4-(substituted)piperazin-1-yl)ethanone [...] Read more.
In breast cancer (BC), STAT3 is hyperactivated. This study explored the design of imidazopyridine-tethered pyrazolines as a de novo drug strategy for inhibiting STAT3 phosphorylation in human BC cells. This involved the synthesis and characterization of two series of compounds namely, 1-(3-(2,6-dimethylimidazo [1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazol-1-yl)-2-(4-(substituted)piperazin-1-yl)ethanone and N-substituted-3-(2,6-dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazoline-1-carbothioamides. Compound 3f with 2,3-dichlorophenyl substitution was recognized among the tested series as a lead structure that inhibited the viability of MCF-7 cells with an IC50 value of 9.2 μM. A dose- and time-dependent inhibition of STAT3 phosphorylation at Tyr705 and Ser727 was observed in MCF-7 and T47D cells when compound 3f was added in vitro. Calculations using density functional theory showed that the title compounds HOMOs and LUMOs are situated on imidazopyridine-pyrazoline and nitrophenyl rings, respectively. Hence, compound 3f effectively inhibited STAT3 phosphorylation in MCF-7 and T47D cells, indicating that these structures may be an alternative synthon to target STAT3 signaling in BC. Full article
Show Figures

Figure 1

Back to TopTop