Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = 2,2,5,5-tetramethylpyrrolin-1-yloxyl radical

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 3916 KiB  
Article
New Ethylenedithio-TTF Containing a 2,2,5,5-Tetramethylpyrrolin-1-yloxyl Radical through a Vinylene Spacer and Its FeCl4− Salt—Synthesis, Physical Properties and Crystal Structure Analyses
by Kazuki Horikiri and Hideki Fujiwara
Magnetochemistry 2017, 3(1), 8; https://doi.org/10.3390/magnetochemistry3010008 - 9 Feb 2017
Cited by 3 | Viewed by 4048
Abstract
To develop novel magnetic conductors exhibiting conducting/magnetic bifunctionalities and peculiar responses to applied magnetic fields, we synthesized new EDT-TTF (ethylenedithiotetrathiafulvalene) donor containing a 2,2,5,5-tetramethylpyrrolin-1-yloxyl radical through a π-conjugated vinylene spacer 1 and examined its electronic and crystal structures, and physical properties. We also [...] Read more.
To develop novel magnetic conductors exhibiting conducting/magnetic bifunctionalities and peculiar responses to applied magnetic fields, we synthesized new EDT-TTF (ethylenedithiotetrathiafulvalene) donor containing a 2,2,5,5-tetramethylpyrrolin-1-yloxyl radical through a π-conjugated vinylene spacer 1 and examined its electronic and crystal structures, and physical properties. We also prepared its cation radical salts by an electrochemical oxidation method and successfully cleared the crystal structures and magnetic properties of the cation radical salts, 1·FeCl4 and 1·GaCl4. These salts have strongly dimerized one-dimensional arrays of the fully oxidized donor molecules, giving rise to the formation of spin-singlet state of the π cation radical spins in the dimer. On the other hand, the FeCl4- anion locates on the side of the dimers with very short S-Cl contacts and mediates very strong π-d interaction between the donor and anion moieties, resulting in the antiferromagnetic behavior of the Weiss temperature of θ = -3.9 K through its d-π-d interaction. Full article
(This article belongs to the Special Issue Magnetism of Molecular Conductors)
Show Figures

Graphical abstract

Back to TopTop