Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = 1-interval connected rings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5540 KiB  
Article
Deformation and Response Analysis of Spur Gear Pairs with Flexible Ring Gears and Localized Spalling Faults
by Shuping Yan, Peng Dai, Da Shu, Jianbin Wang, Shan Wei, Pengfei Liu, Dabin Zhang and Hongwei Li
Machines 2022, 10(7), 560; https://doi.org/10.3390/machines10070560 - 11 Jul 2022
Cited by 4 | Viewed by 2331
Abstract
For the analysis on the deformation of flexible ring gears in spur gear pairs, the complete flexible ring is discretized, and the boundary condition is added to the connecting points to develop a calculation method for the flexible deformation. The ovality index is [...] Read more.
For the analysis on the deformation of flexible ring gears in spur gear pairs, the complete flexible ring is discretized, and the boundary condition is added to the connecting points to develop a calculation method for the flexible deformation. The ovality index is used to describe the deformation degree of flexible ring gears, then the influences of ring-gear width and the spalling defects on the flexible deformation of ring gears are discussed. The result shows that the flexible deformation of ring gears is caused by the gear pair meshing force, and the deformed shape is close to an ellipse. In the single-tooth meshing interval of gear pairs, the main form of deformation is being stretched, and while in the double-tooth meshes, the main form is bending deformation. When the width of the ring gear rims is increased, the flexible deformation of the ring gears can be effectively suppressed, and the vibration amplitude of the gear pairs can be reduced. Additionally, when there is a localized spalling fault on gear pairs, the sudden changes in the deformation of flexible ring gears are generated by the shock of the meshing force. Finally, through the finite element analysis model and the experiment, the mathematical model of gear pairs with flexible rings is confirmed. Full article
Show Figures

Figure 1

23 pages, 5521 KiB  
Article
Investigation on Oil Physical States of Hybrid Shale Oil System: A Case Study on Cretaceous Second White Speckled Shale Formation from Highwood River Outcrop, Southern Alberta
by Hong Zhang, Haiping Huang and Mengsha Yin
Minerals 2022, 12(7), 802; https://doi.org/10.3390/min12070802 - 24 Jun 2022
Cited by 6 | Viewed by 2533
Abstract
Nine samples collected from the Upper Cretaceous Second White Speckled Shale Formation at the Highwood River outcrop in southern Alberta were geochemically characterized for their oil contents, physical states, and chemical compositions. Cold extraction was performed on 8–10 mm and 2–5 mm chips [...] Read more.
Nine samples collected from the Upper Cretaceous Second White Speckled Shale Formation at the Highwood River outcrop in southern Alberta were geochemically characterized for their oil contents, physical states, and chemical compositions. Cold extraction was performed on 8–10 mm and 2–5 mm chips sequentially to obtain the first and second extractable organic matter (EOM-1 and EOM-2), while Soxhlet extraction was performed on powder from previously extracted chips to obtain the third extract (EOM-3). EOM-1 can be roughly regarded as free oil and EOM-2 is weakly adsorbed on mineral surfaces, while EOM-3 may represent the oil strongly adsorbed on kerogen. While both extraction yields and Rock-Eval pyrolysates differed from their original values due to the evaporative loss during outcropping, there was a generally positive correlation between the total EOM and total oil derived from Rock-Eval pyrolysis. EOM-1 was linearly correlated with Rock-Eval S1, while the extractable S2 content was well correlated with the loss of TOC, suggesting that TOC content was the main constraint for adsorbed oils. A bulk composition analysis illustrated that EOM-1 contained more saturated hydrocarbons, while EOM-3 was enriched in resins and asphaltenes. More detailed fractionation between the free and adsorbed oils was demonstrated by molecular compositions of each extract using quantitative GC-MS analysis. Lower-molecular-weight n-alkanes and smaller-ring-number aromatic compounds were preferentially concentrated in EOM-1 as compared to their higher-molecular or greater-ring-number counterparts and vice versa for EOM-3. Fractionation between isoprenoids and adjacent eluted n-alkanes, isomers of steranes, hopanes, alkylnaphthalenes, alkylphenanthrenes and alkyldibenzothiophenes was insignificant, suggesting no allogenic charge from deep strata. Strong chemical fractionation between saturated and aromatic hydrocarbon fractions was observed with EOM-1 apparently enriched in n-alkanes, while EOM-3 retained more aromatic hydrocarbons. However, the difference between free and adsorbed state oils was less dramatic than the variation from shales and siltstones. Lithological heterogeneities controlled both the amount and composition of retained fluids. Oil that resided in shales (source rock) behaved more similar to the EOM-3, with diffusive expulsion leading to the release of discrete molecules from a more adsorbed or occluded phase to a more free phase in siltstones with more connected pores and/or fractures (reservoir). Under current technical conditions, only the free oil can flow and will be the recoverable resource. Therefore, the highest potential can be expected from intervals adjacent to organic-rich beds. The compositional variations due to expulsion and primary migration from source rocks to reservoirs illustrated in the present study will contribute to a better understanding of the distribution of hydrocarbons generated and stored within the shale plays. Full article
(This article belongs to the Special Issue Shale and Tight Reservoir Characterization and Resource Assessment)
Show Figures

Figure 1

16 pages, 5020 KiB  
Article
Numerical Investigations on the Shape Optimization of Stainless-Steel Ring Joint with Machine Learning
by Minsoo Kim, Sarang Yi and Seokmoo Hong
Appl. Sci. 2021, 11(1), 223; https://doi.org/10.3390/app11010223 - 28 Dec 2020
Cited by 1 | Viewed by 2828
Abstract
Since pipes used for water pipes are thin and difficult to fasten using welding or screws, they are fastened by a crimping joint method using a metal ring and a rubber ring. In the conventional crimping joint method, the metal ring and the [...] Read more.
Since pipes used for water pipes are thin and difficult to fasten using welding or screws, they are fastened by a crimping joint method using a metal ring and a rubber ring. In the conventional crimping joint method, the metal ring and the rubber ring are arranged side by side. However, if water leaks from the rubber ring, there is a problem that the adjacent metal ring is rapidly corroded. In this study, to delay and minimize the corrosion of connected water pipes, we propose a spaced crimping joint method in which metal rings and rubber rings are separated at appropriate intervals. This not only improves the contact performance between the connected water pipes but also minimizes the load applied to the crimping jig during crimping to prevent damage to the jig. For this, finite element analyses were performed for the crimp tool and process analysis, and the design parameters were set as the curling length at the top of the joint, the distance between the metal rings and rubber rings, and the crimp jig radius. Through FEA of 100 cases, data to be trained in machine learning were acquired. After that, training data were trained on a machine learning model and compared with a regression model to verify the model’s performance. If the number of training data is small, the two methods are similar. However, the greater the number of training data, the higher the accuracy predicted by the machine learning model. Finally, the spaced crimping joint to which the derived optimal shape was applied was manufactured, and the maximum pressure and pressure distribution applied during compression were obtained using a pressure film. This is almost similar to the value obtained by finite element analysis under the same conditions, and through this, the validity of the approach proposed in this study was verified. Full article
(This article belongs to the Special Issue Metal Forming)
Show Figures

Figure 1

18 pages, 9826 KiB  
Article
Hot Deformation Behavior and Processing Map of High-Strength Nickel Brass
by Qiang Liang, Xin Liu, Ping Li and Xianming Zhang
Metals 2020, 10(6), 782; https://doi.org/10.3390/met10060782 - 12 Jun 2020
Cited by 4 | Viewed by 3325
Abstract
The flow behavior of a new kind of high-strength nickel brass used as automobile synchronizer rings was investigated by hot compression tests with a Gleeble-3500 isothermal simulator at strain rates ranging from 0.01 to 10 s−1 and a wide deformation temperature range [...] Read more.
The flow behavior of a new kind of high-strength nickel brass used as automobile synchronizer rings was investigated by hot compression tests with a Gleeble-3500 isothermal simulator at strain rates ranging from 0.01 to 10 s−1 and a wide deformation temperature range of 873–1073K at intervals of 50 K. The experimental results show that flow stress increases with increasing strain rate and decreasing deformation temperature, and discontinuous yielding appeared in the flow stress curves at higher strain rates. A modified Arrhenius constitutive model considering the compensation of strain was established to describe the flow behavior of this alloy. A processing map was also constructed with strain of 0.3, 0.6, and 0.9 based on the obtained experimental flow stress–strain data. In addition, the optical microstructure evolution and its connection with the processing map of compressed specimens are discussed. The predominant deformation mechanism of Cu-Ni-Al brass is dynamic recovery when the deformation temperature is lower than 973 K and dynamic recrystallization when the deformation temperature is higher than 973 K according to optical observation. The processing map provides the optimal hot working temperature and strain rate, which is beneficial in choosing technical parameters for this high-strength alloy. Full article
(This article belongs to the Special Issue High-Temperature Behavior of Metals)
Show Figures

Figure 1

15 pages, 497 KiB  
Article
Dynamic Ring Exploration with (H,S) View
by Tsuyoshi Gotoh, Yuichi Sudo, Fukuhito Ooshita and Toshimitsu Masuzawa
Algorithms 2020, 13(6), 141; https://doi.org/10.3390/a13060141 - 12 Jun 2020
Cited by 8 | Viewed by 3407
Abstract
The researches about a mobile entity (called agent) on dynamic networks have attracted a lot of attention in recent years. Exploration which requires an agent to visit all the nodes in the network is one of the most fundamental problems. While the exploration [...] Read more.
The researches about a mobile entity (called agent) on dynamic networks have attracted a lot of attention in recent years. Exploration which requires an agent to visit all the nodes in the network is one of the most fundamental problems. While the exploration of dynamic networks with complete information or with no information about network changes has been studied, an agent with partial information about the network changes has not been considered yet despite its practical importance. In this paper, we consider the exploration of dynamic networks by a single agent with partial information about network changes. To the best of our knowledge, this is the very first work to investigate the exploration problem with such partial information. As a first step in this research direction, we focus on 1-interval connected rings as dynamic networks in this paper. We assume that the single agent has partial information called the ( H , S ) view by which it always knows whether or not each of the links within H hops is available in each of the next S time steps. In this setting, we show that H + S n and S n / 2 (n is the size of the network) are necessary and sufficient conditions to explore 1-interval connected rings. Moreover, we investigate the upper and lower bounds of the exploration time. It is proven that the exploration time is O ( n 2 ) for n / 2 S < 2 H 1 , O ( n 2 / H + n H ) for S max ( n / 2 , 2 H 1 ) , O ( n 2 / H + n log H ) for S n 1 , and Ω ( n 2 / H ) for any S where H = min ( H , n / 2 ) . Full article
Show Figures

Figure 1

Back to TopTop