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Abstract: For the analysis on the deformation of flexible ring gears in spur gear pairs, the complete
flexible ring is discretized, and the boundary condition is added to the connecting points to develop a
calculation method for the flexible deformation. The ovality index is used to describe the deformation
degree of flexible ring gears, then the influences of ring-gear width and the spalling defects on the
flexible deformation of ring gears are discussed. The result shows that the flexible deformation of
ring gears is caused by the gear pair meshing force, and the deformed shape is close to an ellipse. In
the single-tooth meshing interval of gear pairs, the main form of deformation is being stretched, and
while in the double-tooth meshes, the main form is bending deformation. When the width of the ring
gear rims is increased, the flexible deformation of the ring gears can be effectively suppressed, and the
vibration amplitude of the gear pairs can be reduced. Additionally, when there is a localized spalling
fault on gear pairs, the sudden changes in the deformation of flexible ring gears are generated by the
shock of the meshing force. Finally, through the finite element analysis model and the experiment,
the mathematical model of gear pairs with flexible rings is confirmed.

Keywords: flexible ring gear; vibration response; Timoshenko beam; ovality; ring-gear width;
spalling fault

1. Introduction

The spur gear transmission system is frequently used in wind turbines and transporta-
tion vehicles for transmitting mechanical power and configuring the required torque. [1,2].
However, in order to meet the requirements of lightweight systems and optimize the
load sharing performance of the gear pair [3,4], the width of gear pairs is designed to
be smaller and smaller, which causes the deformation of flexible ring gears and can no
longer be ignored as it has an important influence on the dynamic response of the gear
pair [5,6]. Moreover, due to factors such as lubrication failure and fatigue wear, a local fault
is easily caused, which seriously reduces the service life and performance of transmission
systems [7,8]. In addition, spalling is a common defect in gear pair systems [9,10]. At
present, the lumped parameter method is used by lots of researchers to investigate the
vibration response of spur gear pairs, while the gears are regarded as rigid bodies [11]. The
deformation mechanism of flexible ring gears has not been clearly revealed and explained,
so this work is dedicated to the development of a method to investigate the flexible defor-
mation of the ring gear, and the deformation law of the flexible ring gear is expected to be
confirmed and explained.

Based on this assumption that the gear is generally considered to be a rigid component,
the dynamic characteristic of gear pairs has been explored by many researchers through
finite element methods and mathematical models. The 2D finite element program (FEM)
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was written by Lewiki and Ballarini [12] to simulate the crack fault propagation path, and
then the influence of tooth width on development directions was summarized using this
program. The calculation result showed that spalling and crack faults can be distinguished
according to the modulation phenomenon in the vibration signal. Jia [13] also used the FEM
to simulate the comprehensive meshing stiffness (TVMS) of gear pairs with crack defects
and discussed the change of localized defects and friction to the vibration characteristics.
Howard [14] established a dynamic model with 26 DOFs to obtain and compare the
response signal of gear pairs with localized defects. The four DOFs mathematical model
of gear pair systems with faults was established by Ma and Chen [15]. By using the
mathematical model, Chen [16] also explored the effect of crack propagation paths on the
TVMS of gear pairs. Liang [17] proposed a mathematical method to determine the TVMS
of gear pairs with localized spalling faults. In this method, the contour equations of fault
shapes were added to the model, and the effect of fault shapes on the TVMS was discovered,
and then the result was compared with that obtained from the FEM. The simulation model
was improved by Chen and Ma [18–20] for quantifying the TVMS and understanding the
influence of tooth profile modification on the TVMS. The meshing process of gear pairs
was regarded as the contact of two cylinders by Wu [21], who then proposed a calculation
method to guide research on non-uniform wear.

Many researchers have also begun to pay attention to the deformation of flexible ring
gears. Sainsot [22] assumed that the gear was elastic rings while the gear teeth were rigid,
according to the elastic ring theory, and a computational model was first established for
the stiffness caused by the gear body’s flexible deformation. Kahraman and Vijayakar [23]
considered the flexibility of ring gears, and they mainly studied the changes in the stress
of ring gears with different rim thicknesses through the FEM under static conditions.
Abousleiman and Velex [24] proposed a rigid–flexible coupling model that was more
accurate than the lumped parameter method. The FEM was mainly used in this model
to process the internal gear ring into flexibility, and other components were treated as
rigid components. The concentrated mass method was adopted to couple the two models
together, and it provided theoretical support for the research of influences of flexible
deformation on system dynamics. The elastic–discrete hybrid model was proposed by
Parker and Wu [25]. In this model, the ring gear was simplified to an elastomer, and other
components were still represented by rigid bodies. Wu [26] also considered the elasticity
of ring gears and investigated the influence of the fixed distribution of the planetary gear
on the inherent characteristics of the system. The Timoshenko beam theory was used by
Chen and Shao [27] to discretize the ring gear in the planetary gear train and develop a
meshing stiffness calculation model; then, they explained the changing law of the TVMS
under different support forms and amounts of support.

In the related research mentioned above, the deformation of planetary gear trains with
fixed flexible ring gears have been discussed by lots of researchers, and the obtained results
can be used to effectively guide the design of the planetary gear train. However, as the
base body of the gear pair is usually considered to be a rigid body, an empirical equation is
developed to describe the elastic deformation, which cannot represent the true deformation
of the ring gear. Moreover, the ring gear of the gear pair shows strong flexibility under the
action of the meshing force, and the flexible deformation has not been clearly understood
and investigated. Thus, an eight-DOFs model of spur gear pairs with flexible ring gears
is developed in the paper. In this model, the complete ring gear is discretized according
to the Timoshenko beam theory, and boundary conditions are applied at the connection
points of adjacent segments. Then, the deformation of the flexible ring gears and vibration
characteristics of the gear pairs with localized faults are analyzed.

2. The Model of Spur Gear Pairs with Flexible Ring Gears
2.1. Curved Timoshenko Beam

Due to the larger diameter of the low-speed gear, and flexible deformation is more
likely to be generated, so high-speed gears are still considered rigid bodies, and the ring gear



Machines 2022, 10, 560 3 of 15

of the low-speed gear is replaced by a flexible smooth ring. The model of uniformly curved
Timoshenko beams is shown in Figure 1, and the deformation of the beam can be divided
into lateral displacement (w), axial displacement (uθ0) and the rotational displacement of
the cross section relative to the section centroid (ϕ), which is calculated by Equation (1) [28]:

∂5w
∂θ5 + 2 ∂3w

∂θ3 + ∂w
∂θ =

R2L(R2EA)
EIEA · ∂qr

∂θ −
R2L
GA ·

∂3qr
∂θ3 + R4L

EI ·qθ −
R2L(EA+GA)

GAEA · ∂
2qθ

∂θ2

∂uθ0
∂θ = −P·

(
∂4w
∂θ4 + ∂2w

∂θ2

)
− w + R2L

EA ·qr − P R2L
GA ·

∂2qr
∂θ2 − P R2L(EA+GA)

GAEA · ∂qθ
∂θ

ϕ = 1
R

(
uθ0 − GA+EA

GA · ∂w
∂θ

)
− EA

RGA ·
∂2uθ0
∂θ2 − RL

GA ·qθ

P = EIGA
R2EAGA+EIGA+EIEA

(1)

where G and E are the shear modulus and elastic modulus; I and A represent the inertia
moment and cross-sectional area of rectangular section of ring gears; θ represents the
calculated angular position of the beam; R and L represent the radius and width of flexible
ring gears in low-speed gears; and qθ and qr represent axial and radial distributed loads.
Assuming zero distributed load, for a uniformly curved Timoshenko beam, the general
homogeneous solution for Equation (1) is as follows:

w(θ) = −C2 − C3 cos θ + C4 sin θ − C5(θ cos θ + P1 sin θ) + C6(θ sin θ − P1 cos θ)
uθ0(θ) = C1 + C2θ + C3 sin θ + C4 cos θ + C5θ sin θ + C6θ cos θ

ϕ(θ) = C1
1
R + C2

θ
R + C5P2 cos θ − C6P2 sin θ

N(θ) = P3
R (C5 sin θ + C6 cos θ)

V(θ) = P3
R (−C5 cos θ + C6 sin θ)

M(θ) = C2
EI
R2 − P3(C5 sin θ + C6 cos θ)

(2)

where Ci(1 ≤ i ≤ 6) are unknown undetermined coefficients; N(θ), V(θ) and M(θ) repre-
sent the internal force of the beam; and the symbols Pi(1 ≤ i ≤ 3) can be expressed by the
following equation: 

P1 = R2GAEA+EIEA−EIGA
R2GAEA+EIEA+EIGA

P2 = 2RGAEA
R2GAEA+EIEA+EIGA

P3 = 2EIAEA
R2GAEA+EIEA+EIGA

(3)
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where G and E are the shear modulus and elastic modulus; I and A represent the inertia 
moment and cross-sectional area of rectangular section of ring gears; 𝜃 represents the 
calculated angular position of the beam; R and L represent the radius and width of flexible 
ring gears in low-speed gears; and 𝑞  and 𝑞  represent axial and radial distributed 
loads. Assuming zero distributed load, for a uniformly curved Timoshenko beam, the 
general homogeneous solution for Equation (1) is as follows: 

⎩⎪⎪
⎪⎪⎨
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⎧𝑤(𝜃) = −𝐶 − 𝐶 cos 𝜃 + 𝐶 sin 𝜃 − 𝐶 (𝜃 cos 𝜃 + 𝑃 sin 𝜃) + 𝐶 (𝜃 sin 𝜃 − 𝑃 cos 𝜃)  𝑢 (𝜃) = 𝐶 + 𝐶 𝜃 + 𝐶 sin 𝜃 + 𝐶 cos 𝜃 + 𝐶 𝜃 sin 𝜃 + 𝐶 𝜃 cos 𝜃                                    𝜑(𝜃) = 𝐶 1𝑅 + 𝐶 𝜃𝑅 + 𝐶 𝑃 cos 𝜃 − 𝐶 𝑃 sin 𝜃                                                                       𝑁(𝜃) = 𝑃𝑅 (𝐶 sin 𝜃 + 𝐶 cos 𝜃)                                                                                                   𝑉(𝜃) = 𝑃𝑅 (−𝐶 cos 𝜃 + 𝐶 sin 𝜃)                                                                                               𝑀(𝜃) = 𝐶 𝐸𝐼𝑅 − 𝑃 (𝐶 sin 𝜃 + 𝐶 cos 𝜃)                                                                                   

 (2)

Figure 1. Uniformly curved Timoshenko beam model.

2.2. Discretization of Ring Gears

The ring gear of low-speed gears is divided into m-sections of uniformly curved
Timoshenko beams. As shown in Figure 2, the numbers 1, 2, 3 . . . indicate the number of
divided curved beams, and the symbols a, b, c . . . indicate the connection points of two
adjacent sections of the beams. θk/θk+1 represents the calculated angular position of two
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adjacent beams, and αk/αk+1 represents the corresponding center angle of the two beams.
For the boundary conditions imposed at the connection point x of two adjacent beams, two
boundary conditions are set according to different forces, as follows:

(1) When the actual meshing point of gear pairs is close to the k-th section of ring gears,
the ring gear of this section is supported by external force, and the boundary condi-
tions are: 

uθ0
(
θ+k
)
= uθ0

(
θ−k+1

)
w
(
θ+k
)
= w

(
θ−k+1

)
ϕ
(
θ+k
)
= ϕ

(
θ−k+1

)
M
(

θ−k+1

)
−M

(
θ+k
)
= mo

V
(

θ−k+1

)
−V

(
θ+k
)
= Fr

N
(

θ−k+1

)
− N

(
θ+k
)
= Ft

(4)

(2) Free support is used in the remaining (m−1) ring gears, and their boundary condi-
tions are: 

uθ0
(
θ+i
)
= uθ0

(
θ−i+1

)
w
(
θ+i
)
= w

(
θ−i+1

)
ϕ
(
θ+i
)
= ϕ

(
θ−i+1

)
M
(

θ−i+1

)
= M

(
θ+i
)

V
(

θ−i+1

)
= V

(
θ+i
)

N
(

θ−i+1

)
= N

(
θ+i
)

1 ≤ i ≤ m, i 6= k (5)

where the symbol ‘+’ indicates the lower boundary of ring gear segments; the symbol
‘−’ indicates the upper boundary of the ring gear segments. The rotation of the low-
speed gear ring gear causes the angular position of each ring gear segment to change
from time to time. The range of calculated angles θk of the k-th ring gear segment is
[α0 + θge + 2kπ/m, α0 + θge + 2(k + 1)π/m], where, α0 is the initial phase of the ring
gears and θge is the rotational angular displacement of low-speed gears.
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Figure 2. Discretization of the ring gear.

Figure 3 shows a model of the meshing force and deformation of the ring gear segments.
Point A is the actual meshing point; Point O is the center of mass of the ring gear segment
where the meshing tooth is located; Point B is the intersection of the action line of the radial
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force Fb and the center line of the gear tooth; and Fm represents the meshing force of the
gear pairs [29].
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meshing point.

The deformation δring‖ of ring gear segments in the direction of LOA and the deforma-
tion δring⊥ perpendicular to LOA are:{

δring‖ = w cos θ + u sin θ + ϕ|OA| sin ϕ1
δring⊥ = w sin θ + u cos θ + ϕ|OA| cos ϕ1

(6)

After boundary conditions at each connection point are imposed, six equations can
be obtained, and each ring gear segment is described by six unknown, undetermined
coefficients, Ck

i (1 ≤ i ≤ 6, 1 ≤ k ≤ m). In this way, after the ring gear is divided into m
sections, 6m unknown undetermined coefficients and 6m equations are obtained. Therefore,
each unknown undetermined coefficient Ck

i can be solved. Then undetermined coefficients
are put into Equation (2), and the deformation of the ring gear at any time can be obtained.

2.3. The Model for TVMS

When there are rectangular spalling faults at the pitch circle of high-speed gears, the
model of the spalling fault and the calculated model for the TVMS are as is shown in
Figure 4. The length, width and depth of faults are marked as as, bs and hs , respectively.
By using the potential energy method, the TVMS of the gear pairs can be calculated [30,31].
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Figure 4. Model of spalling faults: (a) fault on high-speed gear; (b) model for the TVMS. 
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Figure 4. Model of spalling faults: (a) fault on high-speed gear; (b) model for the TVMS.

In Figure 4, Ra, Rf and R are the tip circle radius, root circle radius and pitch circle
radius, respectively, W and h are the tooth width and total tooth height, a1 is the actual
pressure angle, a2 represents the half of the center angle corresponding to a gear tooth, hx
represents the distance between OP and the meshing point and ax and as are the pressure
angles corresponding to the edge of the spalling fault area. F represents the equivalent
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concentrated force of the meshing force FM, and Fa and Fb can be obtained after the meshing
force F is decomposed.

Bending deformation energy Ub:

Ub =
∫ d

0
[Fb(d−x)−Fah]2

2EIs
dx = F2

2kb
=
∫ R1− 1

2 bs
Rb1

[F cos α1(d−x)−F sin α1h]2

2EIs
dx

+
∫ R1+

1
2 bs

R1− 1
2 bs

[F cos α1(d−x)−F cos θ sin α1h]2

2EI′s
dx +

∫ Ra1
R1+

1
2 bs

[F cos α1(d−x)−F sin α1h]2

2EIs
dx

(7)

Shear deformation energy Us:

Us =
∫ d

0

(1.2Fb)
2

2GAx
dx =

F2

2ks
=
∫ R1− 1

2 bs

Rb1

(1.2F cos θ cos α1)
2

2GAs
dx +

∫ R1+
1
2 bs

R1− 1
2 bs

(1.2F cos θ cos α1)
2

2GA′s
dx +

∫ Ra1

R1+
1
2 bs

(1.2F cos θ cos α1)
2

2GAs
dx (8)

Radial compression deformation energy Ua:

Ua =
∫ d

0

F2
a

2EAx
dx =

F2

2ka
=
∫ R1− 1

2 bs

Rb1

(F cos θ sin α1)
2

2EAs
dx +

∫ R1+
1
2 bs

R1− 1
2 bs

(F cos θ sin α1)
2

2EA′s
dx +

∫ Ra1

R1+
1
2 bs

(F cos θ sin α1)
2

2EAs
dx (9)

Ax, Ix are the cross-sectional area and inertia moment of the tooth, which is deter-
mined by the following equations:{

As = 2hxW Healthy
A′s = 2hxW − ashs Spalling

(10)

Is =
(2hxW)3

12 Healthy

I′s =
(2hxW)3−h3

s as
12 Spalling

(11)

Then, the stiffness components are obtained.
Bending stiffness kb:

1
kb

=
∫ −αx
−α1

3 cos α(α2−α){1−cos α1[cos α−(α2−α) sin α]}2

2EW[(α2−α) cos α+sin α]3
dα

+
∫ αs
−αx

12 cos α(α2−α){1−cos α1[cos α−(α2−α) sin α]}2

E{8W[(α2−α) cos α+sin α]3−(hs/Rb1)
3as} dα

+
∫ α2

αs

3 cos α(α2−α){1−cos α1[cos α−(α2−α) sin α]}2

2EW[(α2−α) cos α+sin α]3
dα

(12)

Shear stiffness ks:
1
ks

=
∫ −αx
−α1

1.2(1+v)(α2−α) cos α cos2 α1 cos2 θ
EW[(α2−α) cos α+sin α]

dα

+
∫ αs
−αx

2.4(1+v)(α2−α) cos α cos2 α1 cos2 θ
E{2W[(α2−α) cos α+sin α]−(hs/Rb1)as}dα

+
∫ α2

αs

1.2(1+v)(α2−α) cos2 α1 cos2 θ cos α
EW[(α2−α) cos α+sin α]

dα

(13)

Radial compression stiffness ka:

1
ka

=
∫ −αx

−α1

(α2 − α) cos α sin2 α1 cos2 θ

2EW[(α2 − α) cos α + sin α]
dα +

∫ αs

−αx

(α2 − α) cos α sin2 α1 cos2 θ

E
{

2W[(α2 − α) cos α + sin α]
−(hs/Rb1)as

}dα +
∫ α2

αs

(α2 − α) cos α sin2 α1 cos2 θ

2EW[sin α + (α2 − α) cos α]
dα (14)

The stiffness kring caused by the deformation of the ring gears is introduced, so the
TVMS of the gear pairs is calculated as:

1
kt

=


1
kh

+ 1
kb1

+ 1
ks1

+ 1
ka1

+ 1
kb2

+ 1
ks2

+ 1
ka2

+ 1
kring

Single tooth
2
∑

i=1

(
1

kh,i
+ 1

ka1,i
+ 1

kb1,i
+ 1

ks1,i
+ 1

kb2,i
+ 1

ks2,i
+ 1

kring
+ 1

ka2,i

)
Double teeth

(15)

where kring = Fm/δring. Yang’s model [32] is imitated to complete the calculation of
Hertzian stiffness, kh.
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2.4. System Equations of the Gear Pairs

As shown in Figure 5, the Lagrangian equation is used to establish the eight-DOFs vibra-
tion equations for the spur gear pairs. The dynamic model equations are as follows [33,34].
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The motion equation of the input shaft is:

I f 1
..
θ f 1 + cpin

( .
θ f 1 −

.
θpin

)
+ kpin

(
θ f 1 − θpin

)
= M1 (16)

where θ f 1 and θpin are the angular displacement of the input shaft and driving gear; I f 1
indicates the inertia moment of the high-speed shaft; and M1 is the input torque. cpin and
kpin indicate the torsional damping and torsional stiffness of the high-speed shaft.

The motion equation of the output shaft is:

I f 2
..
θ f 2 + cge

( .
θ f 2 −

.
θge

)
+ kge

(
θ f 2 − θge

)
= −M2 (17)

where I f 2 indicates the inertia moment of the low-speed shaft; θ f 2 and θge represent the
output shaft angular displacement and driven gear angular displacement; M2 indicates
the load torque of the transmission system; and cge and kge are the torsional damping and
torsional stiffness.

The motion equations of the driving gear are:
Ipin

..
θpin − cpin

( .
θpin −

.
θ f 1

)
− kpin

(
θpin − θ f 1

)
= −Rb1FM

mpin
..
xpin + cx1

.
xpin + kx1xpin = 0

mpin
..
ypin + cy1

.
ypin + ky1ypin = FM

(18)

where mpin indicates the mass of driving gear; Rb1 represents the base circle radius; Ipin
represents the inertia moment; xpin and ypin indicate the linear displacement of the high-
speed gear; and kx1, ky1, cx1 and cy1 are the support stiffness and damping.
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The motion equations of the driven gear are:
Ige

..
yge − cge

( .
θge −

.
θ f 2

)
− kge

(
θge − θ f 2

)
= Rb2FM

mring
..
δring⊥ + cx2

.
(δring⊥ −

.
xge) + kx2(δring⊥ − yge) = 0

mring
..
δring‖ + cy2

( .
δring‖ −

.
yge

)
+ ky2

(
δring‖ − yge

)
= −FM

(19)

where mring is the mass of ring gears; Ige represents the inertia moment of driven gear; Rb2
represents the base circle radius; and kx2, ky2, cx2 and cy2 represent the support stiffness
and damping.

The nonlinearity of meshing force FM of the gear pairs is considered, which is mainly
divided into the viscous force Fc and elastic force Fk, as follows:

FM = Fk + Fc
Fk = kt

(
Rb1θpin − Rb2θge − ypin + yge − et

)
Fc = ct

(
Rb1

.
θpin − Rb2

.
θge −

.
ypin +

.
yge −

.
et

) (20)

where ẽt represents the transmission error and is simulated by trigonometric function [35].

et = eo + em sin(2π fmt + ϕo) (21)

where em and eo represent the fluctuation and average error.

2.5. Model Solving

The main parameter for the gear pairs is selected as shown in Table 1, and parameters
for system equations are listed in Table 2. The Runge–Kutta method is used to solve the
system equations. The total working time and working step are set to 2 s and 10−5 s and
the initial state of the system is set to 0.

Table 1. Parameters of gear pairs.

Parameter Driving Gear Driven Gear

Gear modulus m/mm 2 2
Teeth number z 23 81
Pressure Angle α/(◦) 20 20
Gear width W/mm 25 25
Elastic modulus E/GPa 208 208
Poisson ratio v 0.31 0.31

Table 2. Parameters of system equations.

Parameter Values

Mass of driving gear mpin/kg 0.96
Mass of driven gear mge/kg 2.88
Inertia moment of driving gear Ipin/

(
kg ·m2) 4.365 × 10−4

Inertia moment of driven gear Ige/
(
kg ·m2) 8.362 × 10−4

Inertia moment of input shaft I f 1/
(
kg ·m2) 0.0021

Inertia moment of output shaft I f 2/
(
kg ·m2) 0.0105

Torsional stiffness of shaft kx1, kx2, ky1, ky2/(N/m) 4.4× 104

Torsional damping of shaft cx1, cx2, cy1, cy2/(Nms/rad) 5.0× 105

Transmission fluctuation range em/m 3 × 10−5

Mean transmission error eo/m 2 × 10−5

High− speed shaft rotation frequency fr1/Hz 30
Meshing frequency of gear pairs fm/Hz 690
Load T2/(N·m) 10
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3. Result Analysis
3.1. Deformation of Ring Gears

The deformation of ring gears after the system equations are solved is shown in
Figure 6. It is seen that the ring gear is deformed during transmission, and the deformed
shape is changed from a circle to an ellipse. The long axis of the deformed elliptical gear
ring is parallel to the LOA, the short axis is perpendicular to the LOA and the center of the
gear rings is moved along the LOA due to the meshing force and the supporting force.
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Figure 6. Deformation of gear rings: (a) model solution results; (b) FEM results.

The green dashed line in Figure 6a represents a rigid ring gear, and it is not deformed
and presents a round shape. The blue solid line represents the deformed shape of the
flexible ring gears when the double teeth of the gear pair are meshed. Due to the load per
unit length of the gear teeth being smaller, the force arm is relatively large and the ring
gear suffers more bending moments so that the deformation of the ring gears near the
meshing point is mainly manifested as bending deformation. The red solid line indicates
the deformation of the flexible ring gears in the single-tooth meshing interval, and the
meshing force between the teeth and the force per unit length of the gear teeth are relatively
large so the main form of meshing force acting on the flexible gear ring is pressure, which
causes the main form of deformation of the gear ring to be stretched under tension. At this
time, the deformation of the flexible gear ring is relatively large.

The FEM results for the flexible gear rings are shown in Figure 6b. According to
the deformation at different ring gear radius positions, in addition to the complicated
deformation of the ring gear near the actual meshing point, the overall shape of the ring
gear after deformation presents an elliptical shape. Moreover, the angular error between the
long axis of the ellipse and the line of action (LOA) of the meshing force is relatively small.

The results of the FEM are similar to the results obtained by establishing the mathemat-
ical model. It can be considered that the established model is in good agreement with the
actual deformation of the ring gears. The flexible ring gear deforms after being subjected to
the meshing force, and the deformed shape is roughly elliptical.

3.2. Dynamic Response of the Gear Pairs

The dynamic excitation and vibration of the healthy gear pairs is given in Figure 7, and
the TVMS is provided in Figure 7a. During the meshing process, the TVMS of the gear pair
with flexible ring gears also changes periodically, and after the flexibility of the ring gears



Machines 2022, 10, 560 10 of 15

is considered, the TVMS is reduced slightly. The dynamic displacement of the ring gears
in the y direction is shown in Figure 7b, and it is found that the response of the healthy
rigid gear pairs and healthy gear pairs with a flexible ring gear are both stable, without
obvious shock. However, due to the stiffness caused by the flexible deformation of the ring
gears, the TVMS of the gear pairs is reduced, which causes an increase in the displacement
amplitude of the gear pair with flexible ring gears. A period of the time-domain response
in Figure 7b is extracted and plotted, as shown in Figure 7c. There are sudden changes at
the beginning of the single- and double-tooth meshing intervals. In addition, due to the
flexible deformation, the response amplitude of the gear pair with flexible ring gears is
greater than the rigid gear ring.
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The above result demonstrates that the deformed ring gear presents an elliptical shape.
For quantifying the deformation of the flexible ring gears, the ovality can be used to describe
the deformation degree of the ring gears. The ovality of the flexible ring gears is shown
in Figure 7d, and it is found that the ovality also exhibits time-varying characteristics and
changes periodically. One period of the ovality curve is extracted and provided in Figure 7e.
It can be found that the ovality of the flexible ring gears is closely related to the meshing of
the single and double teeth, and the ovality curve is continuous and uninterrupted. In the
single-tooth meshing interval of the gear pairs, the ovality shows a continuous decreasing
trend, and at the beginning of the single-tooth meshing interval, the ovality value is the
largest, which means that the deformation of the flexible ring gear is the largest. When the
gear pair is driven by two pairs of gear teeth, the ovality of the flexible ring gears shows a
tendency of increasing, but its ovality value is smaller than that in the single-tooth meshing
interval as a whole.

After the time-domain response in Figure 7b and the ovality curve in Figure 7d are
converted by the fast Fourier transform (FFT), the spectrum of Figure 7f can be obtained.
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It can be seen that whether it is a rigid gear pair or a flexible gear pair, the components
of spectrum are mainly composed of the meshing frequencies fm, 2 fm, 3 fm, 4 fm. However,
the increase in amplitudes of the gear pairs with flexible ring gears is caused by the
decrease of the TVMS. In addition, it can be seen that there are only meshing frequencies
fm, 2 fm, 3 fm, 4 fm on the ovality spectrum, which can explain that the main excitation of the
ring gear’s flexible deformation is the meshing behavior of the gear pairs.

3.3. Dynamic Response of Gear Pairs with Different Flexible Gear Rim Widths

The width of the flexible ring gear rims has a significant effect on the vibration response
of the gear pairs. Next, by setting different gear rim widths, while the width of the gear teeth
remains unchanged, the vibration characteristics of gear pairs are studied. The dynamic
model of the gear pair under different gear rim widths is explored, and the results are
displayed in Figure 8.
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The TVMS of gear pairs with different ring gear widths is shown in Figure 8a. As
the width of flexible ring gears increases, the TVMS shows an increasing trend due to the
reduction of ring gear deformation. The ovality curve under different flexible gear rim
widths is provided in Figure 8b. As the rim width increases, the ovality value continues to
decrease, which indicates that the ring gears are not prone to deformation, and increasing
the rim width can effectively suppress the deformation of the ring gears. Additionally,
when the rim width is small, the ovality value drops quickly. As the width continues to
increase, the ovality value decreases gently. This can indicate that when the rim thickness is
small, the thin-walled ring gear exhibits strong flexible deformation characteristics. When
the thickness of the ring gears is large, the deformation is almost no longer reduced so that
the gear pair tends to exhibit rigid characteristics.

Figure 8c explains the vibration in the y direction of the driven gear ring with different
rim widths. It can be found that when the width of the rim increases, the vibration
amplitude is decreased due to the reduction of ring gear deformation and the increase of
the TVMS. After the time-domain response of Figure 8c is transformed by the FFT, the
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spectrum of Figure 8d is acquired. The main component of the spectrum is still the meshing
frequency fm, 2 fm, 3 fm, 4 fm of the gear pair, and when the rim width is increased, the
amplitude of meshing frequencies shows a decreasing trend. Particularly, when the width
of the rim is small, the deformation of the thin-walled flexible ring gears is large, which
results in the amplitude of the double frequency 2 fm being greater than the fundamental
frequency fm of the meshing frequency. When the rim width is small, the thin-walled ring
gear exhibits strong flexible deformation, which increases the actual center distance of the
gear pairs. Therefore, there are vibration characteristics of the center distance error of the
gear pairs in the spectrum.

3.4. Response of Gear Pairs with a Localized Spalling Fault

When there are spalling faults on gear pairs, in order to highlight the excitation of
the fault on the deformation of the ring gear, the length as, width bs and depth hs of the
spalling defects are set to 6 mm, 2 mm and 0.2 mm, respectively. After the system equations
of the gear pairs are solved, the obtained dynamic displacement is given in Figure 9.
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The ovality of the flexible gear rings is shown in Figure 9a. When there are local
faults on high-speed gears, the meshing force is impacted, and the sudden change in the
flexible deformation of the ring gears is caused, and there is shock on the ovality curve.
The time interval between adjacent shocks is 0.0333 s, which corresponds to the input
frequency fr1 = 30 Hz of the driving gears. As shown in Figure 9b, the ovality curve in
Figure 9a is converted by the FFT, and then the spectrum of the ovality can be obtained. In
addition to the meshing frequency fm, 2 fm, 3 fm, 4 fm, there are also harmonic frequencies
generated by modulation, such as fm ± fr1, fm ± 2 fr1. The time-domain response and
frequency-domain response of the gear pairs are shown in Figure 9c,d. Similarly, when
there are localized spalling faults on the high-speed gears, there is periodic shock on the
time-domain response of the ring gears in the y direction, and its spectrum composition is
similar to that of the ovality.
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4. Experiment
4.1. Experimental Equipment

The gearbox test bench in Figure 10a is used for obtaining the response of the gear pairs.
The high-speed gear with localized spalling faults is given in Figure 10b. The fault length is
6 mm, the width is 2 mm and the depth is 0.2 mm. The braking torque is 10 N·m, and the
input speed is controlled at 1800 rpm. The tooth width of the gear pairs is 25 mm, and other
components used in experiments are consistent with those set by the system equations.
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Figure 10. Experimental equipment: (a) experimental bench; (b) gear with localized defects.

The dynamic response of the gearbox is collected by the acquisition system, and the
acceleration response of the plumb direction is measured, and the acquisition frequency is
30 k Hz. The corresponding measuring point is the bearing end cap. Then, the obtained
signal is denoised by low-pass filtering.

4.2. Experimental Results

For comparing the response signal collected by experiments with the vibration re-
sponse obtained from the mathematical model, the system equations are solved, and then
the acceleration of the ring gears in the high-speed gear in the y direction is extracted. After
the test, the response of the gear pairs with faults is shown in Figure 11.
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The measured acceleration response is shown in Figure 11a. It is found that due to the
localized defect, periodic shocks are generated in the response signal. The average distance
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between adjacent shock peaks is 0.0333 s, which corresponds to the rotation frequency of
the high-speed gear. The spectrum is shown in Figure 11b, which is primarily composed of
meshing frequencies fm, 2 fm, 3 fm, 4 fm of the gear pairs. Due to the localized fault, harmonic
frequencies are generated, such as fm ± fr1, fm ± 2 fr1, and the frequency interval is 30 Hz.

The acceleration response of the gear pairs obtained from the mathematical model
is provided in Figure 11c,d. The result is similar to the experimentally measured signal,
which verifies the mathematical model established in this paper.

5. Conclusions

In order to study the deformation of flexible ring gears and vibration response of
spur gear pairs, a mathematical model of gear pairs is proposed. By using the model, the
deformation of flexible gear rings and vibration response of the gear pair is studied. Then,
the effects of flexible ring gear rim widths and localized faults on the deformation of the
ring gears and the dynamic response of the gear pairs are further discussed. The main
results summarized are as follows:

(1) The flexible ring gear is deformed due to the meshing force, and the deformed shape
is close to an ellipse. In single-tooth meshing intervals, the main form of deformation
is being stretched, and in double-tooth meshing intervals, the main form is bending.

(2) After the ovality is used to describe the deformation degree of the ring gear, it is
found that in single-tooth meshing interval, the ovality value keeps decreasing. When
the gear pair is meshed with two pairs of teeth, the ovality value shows an increas-
ing trend.

(3) The flexible deformation of the ring gear can be effectively suppressed by increasing
the rim width.

(4) When there are localized spalling faults on gear pairs, the deformation of flexible ring
gears is also abruptly changed due to the shock of the meshing force.
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