Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = 1,1’-binaphtyl monomer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7459 KB  
Article
Effective Enantiodiscrimination in Electroanalysis Based on a New Inherently Chiral 1,1′-Binaphthyl Selector Directly Synthesizable in Enantiopure Form
by Giorgia Bonetti, Serena Arnaboldi, Sara Grecchi, Giulio Appoloni, Elisabetta Massolo, Sergio Rossi, Rocco Martinazzo, Francesco Orsini, Patrizia R. Mussini and Tiziana Benincori
Molecules 2020, 25(9), 2175; https://doi.org/10.3390/molecules25092175 - 6 May 2020
Cited by 5 | Viewed by 4237
Abstract
Enantioselective electroanalysis, which aims to discriminate the enantiomers of electroactive chiral probes in terms of potential difference, is a very attractive goal. To achieve this, its implementation is being studied for various "inherently chiral" selectors, either at the electrode surface or in the [...] Read more.
Enantioselective electroanalysis, which aims to discriminate the enantiomers of electroactive chiral probes in terms of potential difference, is a very attractive goal. To achieve this, its implementation is being studied for various "inherently chiral" selectors, either at the electrode surface or in the medium, yielding outstanding performance. In this context, the new inherently chiral monomer Naph2T4 is introduced, based on a biaromatic atropisomeric core, which is advantageously obtainable in enantiopure form without HPLC separation steps by a synthetic route hinging on enantiopure 2,2’-dibromo-1,1’-binaphthalenes. The antipodes of the new inherently chiral monomer can be easily electrooligomerized, yielding inherently chiral electrode surfaces that perform well in both cyclic voltammetry (CV) enantiodiscrimination tests with pharmaceutically interesting molecules and in magnetoelectrochemistry experiments. Full article
(This article belongs to the Special Issue Advanced Organic Molecular Electroactive Materials)
Show Figures

Graphical abstract

23 pages, 3900 KB  
Article
Effect of the Configuration of a Bulky Aluminum Initiator on the Structure of Copolymers of l,l-Lactide with Symmetric Comonomer Trimethylene Carbonate
by Marta Socka, Ryszard Szymanski, Stanislaw Sosnowski and Andrzej Duda
Polymers 2018, 10(1), 70; https://doi.org/10.3390/polym10010070 - 13 Jan 2018
Cited by 4 | Viewed by 4389
Abstract
The effect of configuration of an asymmetric bulky initiator 2,2′-[1,1′-binaphtyl-2,2′-diyl- bis-(nitrylomethilidyne)]diphenoxy aluminum isopropoxide (Ini) on structure of copolymer of asymmetric monomer l,l-lactide (Lac) with symmetric comonomer trimethylene carbonate (Tmc) was studied using polarimetry, dilatometry, [...] Read more.
The effect of configuration of an asymmetric bulky initiator 2,2′-[1,1′-binaphtyl-2,2′-diyl- bis-(nitrylomethilidyne)]diphenoxy aluminum isopropoxide (Ini) on structure of copolymer of asymmetric monomer l,l-lactide (Lac) with symmetric comonomer trimethylene carbonate (Tmc) was studied using polarimetry, dilatometry, Size Exclusion Chromatography (SEC), and Carbon Nuclear Magnetic Resonance (13C NMR). When the S-enantiomer of Ini was used the distribution in copolymer chains at the beginning of polymerization is statistical, with alternacy tendency, changing next through a gradient region to homoblocks of Tmc. However, when R-Ini was used, the product formed was a gradient oligoblock one, with Tmc blocks prevailing at the beginning, changing to Lac blocks dominating at the end part of chains. Initiation of copolymerization with the mixture of both initiator enantiomers (S:R = 6:94) gave a multiblock copolymer of similar features but shorter blocks. Analysis of copolymerization progress required complex analysis of dilatometric data, assuming different molar volume contraction coefficients for units located in different triads. Comonomer reactivity ratios of studied copolymerizations were determined. Full article
(This article belongs to the Special Issue Polymerization Kinetics)
Show Figures

Graphical abstract

Back to TopTop