Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = “Sandwich” plant growth system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3755 KB  
Article
Immunomodulatory Effects of the Tobacco Defensin NaD1
by Ekaterina I. Finkina, Ivan V. Bogdanov, Olga V. Shevchenko, Serafima I. Fateeva, Anastasia A. Ignatova, Sergey V. Balandin and Tatiana V. Ovchinnikova
Antibiotics 2024, 13(11), 1101; https://doi.org/10.3390/antibiotics13111101 - 19 Nov 2024
Cited by 5 | Viewed by 1824
Abstract
Background/Objectives: Defensins are important components of the innate plant immune system, exhibiting antimicrobial activity against phytopathogens, as well as against fungi pathogenic to humans. Along with antifungal activity, plant defensins are also capable of influencing various immune processes, but not much is known [...] Read more.
Background/Objectives: Defensins are important components of the innate plant immune system, exhibiting antimicrobial activity against phytopathogens, as well as against fungi pathogenic to humans. Along with antifungal activity, plant defensins are also capable of influencing various immune processes, but not much is known about these effects. In this study, we investigated the immunomodulatory effects of the tobacco defensin NaD1, which possesses a pronounced antifungal activity. Methods and Results: We showed that NaD1 could penetrate the Caco-2 polarized monolayer. Using a multiplex assay with a panel of 48 cytokines, chemokines and growth factors, we demonstrated that NaD1 at a concentration of 2 μM had immunomodulatory effects on human dendritic cells and blood monocytes, mainly inhibiting the production of various immune factors. Using the sandwich ELISA method, we demonstrated that NaD1 at the same concentration had a pronounced immunomodulatory effect on unstimulated THP-1-derived macrophages and those stimulated by bacterial LPS or fungal zymosan. NaD1 had a dual effect and induced the production of both pro-inflammatory cytokine IL-1β as well as anti-inflammatory IL-10 on resting and pro-inflammatory THP-1-derived macrophages. We also found that the immunomodulatory effects of the tobacco defensin NaD1 and the pea defensin Psd1 differed from each other, indicating nonuniformity in the modes of action of plant defensins. Conclusions: Thus, our data demonstrated that the tobacco defensin NaD1 exhibits different immunomodulatory effects on various immune cells. We hypothesized that influence on human immune system along with antifungal activity, could determine the effectiveness of this peptide under infection in vivo. Full article
Show Figures

Figure 1

18 pages, 1681 KB  
Article
Drought-Induced Leaf Proteome Changes in Switchgrass Seedlings
by Zhujia Ye, Sasikiran Sangireddy, Ikenna Okekeogbu, Suping Zhou, Chih-Li Yu, Dafeng Hui, Kevin J. Howe, Tara Fish and Theodore W. Thannhauser
Int. J. Mol. Sci. 2016, 17(8), 1251; https://doi.org/10.3390/ijms17081251 - 2 Aug 2016
Cited by 16 | Viewed by 8059
Abstract
Switchgrass (Panicum virgatum) is a perennial crop producing deep roots and thus highly tolerant to soil water deficit conditions. However, seedling establishment in the field is very susceptible to prolonged and periodic drought stress. In this study, a “sandwich” system simulating [...] Read more.
Switchgrass (Panicum virgatum) is a perennial crop producing deep roots and thus highly tolerant to soil water deficit conditions. However, seedling establishment in the field is very susceptible to prolonged and periodic drought stress. In this study, a “sandwich” system simulating a gradual water deletion process was developed. Switchgrass seedlings were subjected to a 20-day gradual drought treatment process when soil water tension was increased to 0.05 MPa (moderate drought stress) and leaf physiological properties had expressed significant alteration. Drought-induced changes in leaf proteomes were identified using the isobaric tags for relative and absolute quantitation (iTRAQ) labeling method followed by nano-scale liquid chromatography mass spectrometry (nano-LC-MS/MS) analysis. Additionally, total leaf proteins were processed using a combinatorial library of peptide ligands to enrich for lower abundance proteins. Both total proteins and those enriched samples were analyzed to increase the coverage of the quantitative proteomics analysis. A total of 7006 leaf proteins were identified, and 257 (4% of the leaf proteome) expressed a significant difference (p < 0.05, fold change <0.6 or >1.7) from the non-treated control to drought-treated conditions. These proteins are involved in the regulation of transcription and translation, cell division, cell wall modification, phyto-hormone metabolism and signaling transduction pathways, and metabolic pathways of carbohydrates, amino acids, and fatty acids. A scheme of abscisic acid (ABA)-biosynthesis and ABA responsive signal transduction pathway was reconstructed using these drought-induced significant proteins, showing systemic regulation at protein level to deploy the respective mechanism. Results from this study, in addition to revealing molecular responses to drought stress, provide a large number of proteins (candidate genes) that can be employed to improve switchgrass seedling growth and establishment under soil drought conditions (Data are available via ProteomeXchange with identifier PXD004675). Full article
(This article belongs to the Special Issue Plant Proteomic Research)
Show Figures

Graphical abstract

Back to TopTop