Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = β-caryophellene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 9729 KiB  
Article
In Silico Study and Excito-Repellent Activity of Vitex negundo L. Essential Oil against Anopheles gambiae
by Bamidele J. Okoli, Wafa Ali Eltayb, Gideon A. Gyebi, Amr R. Ghanam, Zakari Ladan, Joseph C. Oguegbulu and Mohnad Abdalla
Appl. Sci. 2022, 12(15), 7500; https://doi.org/10.3390/app12157500 - 26 Jul 2022
Cited by 15 | Viewed by 2953
Abstract
(1) Background: Essential oil from Vitex negundo is known to have repellent and insecticidal properties toward the Anopheles gambiae and this is linked to its monoterpene and sesquiterpene content. In this work, an effort is made to delineate the constitution of V. negundo [...] Read more.
(1) Background: Essential oil from Vitex negundo is known to have repellent and insecticidal properties toward the Anopheles gambiae and this is linked to its monoterpene and sesquiterpene content. In this work, an effort is made to delineate the constitution of V. negundo essential oil (VNEO) and their interaction with odorant-binding proteins (OBPs) of A. gambiae and hence access its repellent efficiency as cost-effective and safer malaria vector control alternatives. (2) Methods: Anopheles species authentication was performed by genomic DNA analysis and was subjected to behavioral analysis. GC-MS profiling was used to identify individual components of VNEO. Anopheles OBPs were obtained from the RCSB protein data bank and used for docking studies. Determination of ligand efficiency metrics and QSAR studies were performed using Hyper Chem Professional 8.0.3, and molecular dynamics simulations were performed using the Desmond module. (3) Results: GC-MS analysis of VNEO showed 28 compounds (monoterpenes, 80.16%; sesquiterpenes, 7.63%; and unknown constituents, 10.88%). The ligand efficiency metrics of all four ligands against the OBP 7 were within acceptable ranges. β-selinene (−12.2 kcal/mol), β-caryophellene (−9.5 kcal/mol), sulcatone (−10.9 kcal/mol), and α-ylangene (−9.3 kcal/mol) showed the strongest binding affinities for the target proteins. The most stable hydrophobic interactions were observed between β-selinene (Phe111 and Phe120), Sulcatone (Phe54 and Phe120), and α-ylangene (Phe111), while only sulcatone (Tyr49) presented H-bond interactions in the simulated environment. (4) Conclusions: Sulcatone and β-caryophyllene presented the best log p values, 6.45 and 5.20, respectively. These lead phytocompounds can be used in their purest as repellent supplement or as a natural anti-mosquito agent in product formulations. Full article
(This article belongs to the Special Issue Antibacterial Activity of Plant Extracts)
Show Figures

Figure 1

16 pages, 2791 KiB  
Article
Prediction of Terpenoid Toxicity Based on a Quantitative Structure–Activity Relationship Model
by Rosa Perestrelo, Catarina Silva, Miguel X. Fernandes and José S. Câmara
Foods 2019, 8(12), 628; https://doi.org/10.3390/foods8120628 - 1 Dec 2019
Cited by 21 | Viewed by 4123
Abstract
Terpenoids, including monoterpenoids (C10), norisoprenoids (C13), and sesquiterpenoids (C15), constitute a large group of plant-derived naturally occurring secondary metabolites with highly diverse chemical structures. A quantitative structure–activity relationship (QSAR) model to predict terpenoid toxicity and to evaluate [...] Read more.
Terpenoids, including monoterpenoids (C10), norisoprenoids (C13), and sesquiterpenoids (C15), constitute a large group of plant-derived naturally occurring secondary metabolites with highly diverse chemical structures. A quantitative structure–activity relationship (QSAR) model to predict terpenoid toxicity and to evaluate the influence of their chemical structures was developed in this study by assessing in real time the toxicity of 27 terpenoid standards using the Gram-negative bioluminescent Vibrio fischeri. Under the test conditions, at a concentration of 1 µM, the terpenoids showed a toxicity level lower than 5%, with the exception of geraniol, citral, (S)-citronellal, geranic acid, (±)-α-terpinyl acetate, and geranyl acetone. Moreover, the standards tested displayed a toxicity level higher than 30% at concentrations of 50–100 µM, with the exception of (+)-valencene, eucalyptol, (+)-borneol, guaiazulene, β-caryophellene, and linalool oxide. Regarding the functional group, terpenoid toxicity was observed in the following order: alcohol > aldehyde ~ ketone > ester > hydrocarbons. The CODESSA software was employed to develop QSAR models based on the correlation of terpenoid toxicity and a pool of descriptors related to each chemical structure. The QSAR models, based on t-test values, showed that terpenoid toxicity was mainly attributed to geometric (e.g., asphericity) and electronic (e.g., maximum partial charge for a carbon (C) atom (Zefirov’s partial charge (PC)) descriptors. Statistically, the most significant overall correlation was the four-parameter equation with a training coefficient and test coefficient correlation higher than 0.810 and 0.535, respectively, and a square coefficient of cross-validation (Q2) higher than 0.689. According to the obtained data, the QSAR models are suitable and rapid tools to predict terpenoid toxicity in a diversity of food products. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Graphical abstract

13 pages, 716 KiB  
Article
Chemical Composition and Antioxidant Activity of Essential Oil of Six Pinus Taxa Native to China
by Qing Xie, Zhihong Liu and Zhouqi Li
Molecules 2015, 20(5), 9380-9392; https://doi.org/10.3390/molecules20059380 - 21 May 2015
Cited by 48 | Viewed by 8480
Abstract
The essential oils obtained by steam distillation from needles of six China endemic Pinus taxa (P. tabulaeformis, P. tabulaeformis f. shekanensis, P. tabulaeformis var. mukdensis, P. tabulaeformis var. umbraculifera, P. henryi and P [...] Read more.
The essential oils obtained by steam distillation from needles of six China endemic Pinus taxa (P. tabulaeformis, P. tabulaeformis f. shekanensis, P. tabulaeformis var. mukdensis, P. tabulaeformis var. umbraculifera, P. henryi and P. massoniana) were analysed by GC/MS. A total of 72 components were separated and identified by GC/MS from the six taxa. The major constituents of the essential oils were: α-pinene (6.78%–20.55%), bornyl acetale (3.32%–12.71%), β-caryophellene (18.26%–26.31%), α-guaiene (1.23%–8.19%), and germacrene D (1.26%–9.93%). Moreover, the essential oils were evaluated for antioxidant potential by three assays (DPPH, FRAP and ABTS) and tested for their total phenolic content. The results showed that all essential oils exhibited acceptable antioxidant activities and these strongly suggest that these pine needles may serve as a potential source of natural antioxidants for food and medical purposes. Full article
(This article belongs to the Collection Recent Advances in Flavors and Fragrances)
Show Figures

Figure 1

Back to TopTop