Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = α-Fe2O3(0001)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6102 KiB  
Article
Thin Films of BaM Hexaferrite with an Inclined Orientation of the Easy Magnetization Axis: Crystal Structure and Magnetic Properties
by Boris Krichevtsov, Alexander Korovin, Vladimir Fedorov, Sergey Suturin, Aleksandr A. Levin, Andrey Telegin, Elena Balashova and Nikolai Sokolov
Nanomaterials 2024, 14(23), 1883; https://doi.org/10.3390/nano14231883 - 23 Nov 2024
Viewed by 1138
Abstract
Thin (~50 nm thick) BaM hexaferrite (BaFe12O19) films were grown on (1–102) and (0001) cut α-Al2O3 (sapphire) substrates via laser molecular beam epitaxy using a one- or two-stage growth protocol. The advantages of a two-stage protocol [...] Read more.
Thin (~50 nm thick) BaM hexaferrite (BaFe12O19) films were grown on (1–102) and (0001) cut α-Al2O3 (sapphire) substrates via laser molecular beam epitaxy using a one- or two-stage growth protocol. The advantages of a two-stage protocol are shown. The surface morphology, structural and magnetic properties of films were studied using atomic force microscopy, reflected high-energy electron diffraction, three-dimensional X-ray diffraction reciprocal space mapping, powder X-ray diffraction, magneto-optical, and magnetometric methods. Annealed BaFe12O19/Al2O3 (1–102) structures consist of close-packed islands epitaxially bonded to the substrate. The hexagonal crystallographic axis and the easy axis (EA) of the magnetization of the films are deflected from the normal to the film by an angle of φ~60°. The films exhibit magnetic hysteresis loops for both in-plane Hin-plane and out-of-plane Hout-of-plane magnetic fields. The shape of Mout-of-plane(Hin-plane) and Min-plane(Hin-plane) hysteresis loops strongly depends on the azimuth θ of the Hin plane, confirming the tilted orientation of the EA. The Mout-of-plane(Hout-of-plane) magnetization curves are caused by the reversible rotation of magnetization and irreversible magnetization jumps associated with the appearance and motion of domain walls. In the absence of a magnetic field, the magnetization is oriented at an angle close to φ. Full article
(This article belongs to the Special Issue Magnetization and Magnetic Disorder at the Nanoscale)
Show Figures

Figure 1

17 pages, 6994 KiB  
Article
Tailoring the Lithium Concentration in Thin Lithium Ferrite Films Obtained by Dual Ion Beam Sputtering
by Pilar Prieto, Cayetano Hernández-Gómez, Sara Román-Sánchez, Marina París-Ogáyar, Giulio Gorni, José Emilio Prieto and Aida Serrano
Nanomaterials 2024, 14(14), 1220; https://doi.org/10.3390/nano14141220 - 18 Jul 2024
Viewed by 1365
Abstract
Thin films of lithium spinel ferrite, LiFe5O8, have attracted much scientific attention because of their potential for efficient excitation, the manipulation and propagation of spin currents due to their insulating character, high-saturation magnetization, and Curie temperature, as well as [...] Read more.
Thin films of lithium spinel ferrite, LiFe5O8, have attracted much scientific attention because of their potential for efficient excitation, the manipulation and propagation of spin currents due to their insulating character, high-saturation magnetization, and Curie temperature, as well as their ultra-low damping value. In addition, LiFe5O8 is currently one of the most interesting materials in terms of developing spintronic devices based on the ionic control of magnetism, for which it is crucial to control the lithium’s atomic content. In this work, we demonstrate that dual ion beam sputtering is a suitable technique to tailor the lithium content of thin films of lithium ferrite (LFO) by using the different energies of the assisting ion beam formed by Ar+ and O2+ ions during the growth process. Without assistance, a disordered rock-salt LFO phase (i.e., LiFeO2) can be identified as the principal phase. Under beam assistance, highly out-of-plane-oriented (111) thin LFO films have been obtained on (0001) Al2O3 substrates with a disordered spinel structure as the main phase and with lithium concentrations higher and lower than the stoichiometric spinel phase, i.e., LiFe5O8. After post-annealing of the films at 1025 K, a highly ordered ferromagnetic spinel LFO phase was found when the lithium concentration was higher than the stoichiometric value. With lower lithium contents, the antiferromagnetic hematite (α-Fe2O3) phase emerged and coexisted in films with the ferromagnetic LixFe6-xO8. These results open up the possibility of controlling the properties of thin lithium ferrite-based films to enable their use in advanced spintronic devices. Full article
Show Figures

Figure 1

24 pages, 8467 KiB  
Article
Dissociative Adsorption of Hydrogen Molecules at Al2O3 Inclusions in Steels and Its Implications for Gaseous Hydrogen Embrittlement of Pipelines
by Yinghao Sun and Frank Cheng
Corros. Mater. Degrad. 2024, 5(2), 200-223; https://doi.org/10.3390/cmd5020008 - 2 Apr 2024
Cited by 5 | Viewed by 2461
Abstract
Hydrogen embrittlement (HE) of steel pipelines in high-pressure gaseous environments is a potential threat to the pipeline integrity. The occurrence of gaseous HE is subjected to associative adsorption of hydrogen molecules (H2) at specific “active sites”, such as grain boundaries and [...] Read more.
Hydrogen embrittlement (HE) of steel pipelines in high-pressure gaseous environments is a potential threat to the pipeline integrity. The occurrence of gaseous HE is subjected to associative adsorption of hydrogen molecules (H2) at specific “active sites”, such as grain boundaries and dislocations on the steel surface, to generate hydrogen atoms (H). Non-metallic inclusions are another type of metallurgical defect potentially serving as “active sites” to cause the dissociative adsorption of H2. Al2O3 is a common inclusion contained in pipeline steels. In this work, the dissociative adsorption of hydrogen at the α-Al2O3(0001)/α-Fe(111) interface on the Fe011¯ plane was studied by density functional theory calculations. The impact of gas components of O2 and CH4 on the dissociative adsorption of hydrogen was determined. The occurrence of dissociative adsorption of hydrogen at the Al2O3 inclusion/Fe interface is favored under conditions relevant to pipeline operation. Thermodynamic feasibility was observed for Fe and O atoms, but not for Al atoms. H atoms can form more stable adsorption configurations on the Fe side of the interface, while it is less likely for H atoms to adsorb on the Al2O3 side. There is a greater tendency for the occurrence of dissociative adsorption of O2 and CH4 than of H2, due to the more favorable energetics of the former. In particular, the dissociative adsorption of O2 is preferential over that of CH4. The Al-terminated interface exhibits a higher H binding energy compared to the O-terminated interface, indicating a preference for hydrogen accumulation at the Al-terminated interface. Full article
Show Figures

Figure 1

13 pages, 3009 KiB  
Article
Ab Initio Studies of Bimetallic-Doped {0001} Hematite Surface for Enhanced Photoelectrochemical Water Splitting
by Joseph Simfukwe, Refilwe Edwin Mapasha, Artur Braun and Mmantsae Diale
Catalysts 2021, 11(8), 940; https://doi.org/10.3390/catal11080940 - 3 Aug 2021
Cited by 6 | Viewed by 2685
Abstract
First-principles calculations based on density functional theory (DFT) were carried out to study the energetic stability and electronic properties of a bimetallic-doped α-Fe2O3 photoanode surface with (Zn, Ti) and (Zn, Zr) pairs for enhanced PEC water splitting. The doped systems [...] Read more.
First-principles calculations based on density functional theory (DFT) were carried out to study the energetic stability and electronic properties of a bimetallic-doped α-Fe2O3 photoanode surface with (Zn, Ti) and (Zn, Zr) pairs for enhanced PEC water splitting. The doped systems showed negative formation energies under both O-rich and Fe-rich conditions which make them thermodynamically stable and possible to be synthesised. It is found that in a bimetallic (Zn, Ti)-doped system, at a doping concentration of 4.20% of Ti, the bandgap decreases from 2.1 eV to 1.80 eV without the formation of impurity states in the bandgap. This is favourable for increased photon absorption and efficient movement of charges from the valance band maximum (VBM) to the conduction band minimum (CBM). In addition, the CBM becomes wavy and delocalised, suggesting a decrease in the charge carrier mass, enabling electron–holes to successfully diffuse to the surface, where they are needed for water oxidation. Interestingly, with single doping of Zr at the third layer (L3) of Fe atoms of the {0001} α-Fe2O3 surface, impurity levels do not appear in the bandgap, at both concentrations of 2.10% and 4.20%. Furthermore, at 2.10% doping concentration of α-Fe2O3 with Zr, CBM becomes delocalised, suggesting improved carrier mobility, while the bandgap is altered from 2.1 eV to 1.73 eV, allowing more light absorption in the visible region. Moreover, the photocatalytic activities of Zr-doped hematite could be improved further by codoping it with Zn because Zr is capable of increasing the conductivity of hematite by the substitution of Fe3+ with Zr4+, while Zn can foster the surface reaction and reduce quick recombination of the electron–hole pairs. Full article
Show Figures

Figure 1

Back to TopTop