Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = α,β-unsaturated cyclic compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3806 KiB  
Article
Stereodivergent Synthesis of Aldol Products Using Pseudo-C2 Symmetric N-benzyl-4-(trifluoromethyl)piperidine-2,6-dione
by Rina Yada, Tomoko Kawasaki-Takasuka and Takashi Yamazaki
Molecules 2024, 29(21), 5129; https://doi.org/10.3390/molecules29215129 - 30 Oct 2024
Viewed by 1072
Abstract
The present article describes the successful performance of crossed aldol reactions of the CF3-containing pseudo-C2 symmetric cyclic imide with various aldehydes. The utilization of HMPA as an additive attained the preferential formation of the anti-products in good to excellent [...] Read more.
The present article describes the successful performance of crossed aldol reactions of the CF3-containing pseudo-C2 symmetric cyclic imide with various aldehydes. The utilization of HMPA as an additive attained the preferential formation of the anti-products in good to excellent yields, which contrasts with our previous method without this additive, proceeding to furnish the corresponding syn-isomers. The effective participation of ketones and α,β-unsaturated carbonyl compounds in reactions with this imide was also demonstrated to expand the application of this imide. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

18 pages, 4650 KiB  
Article
(E)-2-Benzylidenecyclanones: Part XIX. Reaction of (E)-2-(4′-X-Benzylidene)-1-tetralones with Cellular Thiols: Comparison of Thiol Reactivities of Open-Chain Chalcones and Their Six- and Seven-Membered Cyclic Analogs
by Fatemeh Kenari, Zoltán Pintér, Szilárd Molnár, Igor D. Borges, Ademir J. Camargo, Hamilton B. Napolitano and Pál Perjési
Int. J. Mol. Sci. 2024, 25(14), 7773; https://doi.org/10.3390/ijms25147773 - 16 Jul 2024
Cited by 2 | Viewed by 1110
Abstract
Non-enzyme-catalyzed thiol addition onto the α,β-unsaturated carbonyl system is associated with several biological effects. Kinetics and diastereoselectivity of non-enzyme catalyzed nucleophilic addition of reduced glutathione (GSH) and N-acetylcysteine (NAC) to the six-membered cyclic chalcone analogs 2a and 2b were investigated at different pH [...] Read more.
Non-enzyme-catalyzed thiol addition onto the α,β-unsaturated carbonyl system is associated with several biological effects. Kinetics and diastereoselectivity of non-enzyme catalyzed nucleophilic addition of reduced glutathione (GSH) and N-acetylcysteine (NAC) to the six-membered cyclic chalcone analogs 2a and 2b were investigated at different pH values (pH 3.2, 7.4 and 8.0). The selected compounds displayed in vitro cancer cell cytotoxicity (IC50) of different orders of magnitude. The chalcones intrinsically reacted with both thiols under all incubation conditions. The initial rates and compositions of the final mixtures depended both on the substitution and the pH. The stereochemical outcome of the reactions was evaluated using high-pressure liquid chromatography with UV detection (HPLC-UV). The structures of the formed thiol-conjugates and the retro-Michael products (Z)-2a and (Z)-2b were confirmed by high-pressure liquid chromatography-mass spectrometry (HPLC-MS). Frontier molecular orbitals and the Fukui function calculations were carried out to investigate their effects on the six-membered cyclic analogs. Data were compared with those obtained with the open-chain (1) and the seven-membered (3) analogs. The observed reactivities do not directly relate to the difference in in vitro cancer cell cytotoxicity of the compounds. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

17 pages, 4436 KiB  
Article
(E)-2-Benzylidenecyclanones: Part XVIII Study the Possible Link between Glutathione Reactivity and Cancer Cell Cytotoxic Effects of Some Cyclic Chalcone Analogs A Comparison of the Reactivity of the Open-Chain and the Seven-Membered Homologs
by Fatemeh Kenari, Szilárd Molnár, Igor D. Borges, Hamilton B. Napolitano and Pál Perjési
Int. J. Mol. Sci. 2023, 24(10), 8557; https://doi.org/10.3390/ijms24108557 - 10 May 2023
Cited by 4 | Viewed by 2228
Abstract
Non-enzymatic thiol addition into the α,β-unsaturated carbonyl system is associated with several biological effects. In vivo, the reactions can form small-molecule thiol (e.g., glutathione) or protein thiol adducts. The reaction of two synthetic (4′-methyl- and 4′-methoxy substituted) cyclic chalcone analogs with reduced glutathione [...] Read more.
Non-enzymatic thiol addition into the α,β-unsaturated carbonyl system is associated with several biological effects. In vivo, the reactions can form small-molecule thiol (e.g., glutathione) or protein thiol adducts. The reaction of two synthetic (4′-methyl- and 4′-methoxy substituted) cyclic chalcone analogs with reduced glutathione (GSH) and N-acetylcysteine (NAC) was studied by (high-pressure liquid chromatography-ultraviolet spectroscopy) HPLC-UV method. The selected compounds displayed in vitro cancer cell cytotoxicity (IC50) of different orders of magnitude. The structure of the formed adducts was confirmed by (high-pressure liquid chromatography-mass spectrometry) HPLC-MS. The incubations were performed under three different pH conditions (pH 3.2/3.7, 6.3/6.8, and 8.0/7.4). The chalcones intrinsically reacted with both thiols under all incubation conditions. The initial rates and compositions of the final mixtures depended on the substitution and the pH. The frontier molecular orbitals and the Fukui function were carried out to investigate the effects on open-chain and seven-membered cyclic analogs. Furthermore, machine learning protocols were used to provide more insights into physicochemical properties and to support the different thiol-reactivity. HPLC analysis indicated diastereoselectivity of the reactions. The observed reactivities do not directly relate to the different in vitro cancer cell cytotoxicity of the compounds. Full article
(This article belongs to the Special Issue Chalcones: Biosynthesis, Functions, and Biological Implications)
Show Figures

Figure 1

25 pages, 3819 KiB  
Review
Multienzymatic Processes Involving Baeyer–Villiger Monooxygenases
by Gonzalo de Gonzalo and Andrés R. Alcántara
Catalysts 2021, 11(5), 605; https://doi.org/10.3390/catal11050605 - 8 May 2021
Cited by 20 | Viewed by 5125
Abstract
Baeyer–Villiger monooxygenases (BVMOs) are flavin-dependent oxidative enzymes capable of catalyzing the insertion of an oxygen atom between a carbonylic Csp2 and the Csp3 at the alpha position, therefore transforming linear and cyclic ketones into esters and lactones. These enzymes are dependent [...] Read more.
Baeyer–Villiger monooxygenases (BVMOs) are flavin-dependent oxidative enzymes capable of catalyzing the insertion of an oxygen atom between a carbonylic Csp2 and the Csp3 at the alpha position, therefore transforming linear and cyclic ketones into esters and lactones. These enzymes are dependent on nicotinamides (NAD(P)H) for the flavin reduction and subsequent reaction with molecular oxygen. BVMOs can be included in cascade reactions, coupled to other redox enzymes, such as alcohol dehydrogenases (ADHs) or ene-reductases (EREDs), so that the direct conversion of alcohols or α,β-unsaturated carbonylic compounds to the corresponding esters can be achieved. In the present review, the different synthetic methodologies that have been performed by employing multienzymatic strategies with BVMOs combining whole cells or isolated enzymes, through sequential or parallel methods, are described, with the aim of highlighting the advantages of performing multienzymatic systems, and show the recent advances for overcoming the drawbacks of using BVMOs in these techniques. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Graphical abstract

27 pages, 6098 KiB  
Article
Cyano Enone-Bearing Triterpenoid Soloxolone Methyl Inhibits Epithelial-Mesenchymal Transition of Human Lung Adenocarcinoma Cells In Vitro and Metastasis of Murine Melanoma In Vivo
by Andrey V. Markov, Kirill V. Odarenko, Aleksandra V. Sen’kova, Oksana V. Salomatina, Nariman F. Salakhutdinov and Marina A. Zenkova
Molecules 2020, 25(24), 5925; https://doi.org/10.3390/molecules25245925 - 14 Dec 2020
Cited by 12 | Viewed by 3525
Abstract
Introduction of α-cyano α,β-unsaturated carbonyl moiety into natural cyclic compounds markedly improves their bioactivities, including inhibitory potential against tumor growth and metastasis. Previously, we showed that cyano enone-bearing derivatives of 18βH-glycyrrhetinic (GA) and deoxycholic acids displayed marked cytotoxicity in different tumor cell lines. [...] Read more.
Introduction of α-cyano α,β-unsaturated carbonyl moiety into natural cyclic compounds markedly improves their bioactivities, including inhibitory potential against tumor growth and metastasis. Previously, we showed that cyano enone-bearing derivatives of 18βH-glycyrrhetinic (GA) and deoxycholic acids displayed marked cytotoxicity in different tumor cell lines. Moreover, GA derivative soloxolone methyl (SM) was found to induce ER stress and apoptosis in tumor cells in vitro and inhibit growth of carcinoma Krebs-2 in vivo. In this work, we studied the effects of these compounds used in non-toxic dosage on the processes associated with metastatic potential of tumor cells. Performed screening revealed SM as a hit compound, which inhibits motility of murine melanoma B16 and human lung adenocarcinoma A549 cells and significantly suppresses colony formation of A549 cells. Further study showed that SM effectively blocked transforming growth factor β (TGF-β)-induced epithelial-mesenchymal transition (EMT) of A549 cells: namely, inhibited TGF-β-stimulated motility and invasion of tumor cells as well as loss of their epithelial characteristics, such as, an acquisition of spindle-like phenotype, up- and down-regulation of mesenchymal (vimentin, fibronectin) and epithelial (E-cadherin, zona occludens-1 (ZO-1)) markers, respectively. Network pharmacology analysis with subsequent verification by molecular modeling revealed that matrix metalloproteinases MMP-2/-9 and c-Jun N-terminal protein kinase 1 (JNK1) can be considered as hypothetical primary targets of SM, mediating its marked anti-EMT activity. The inhibitory effect of SM on EMT revealed in vitro was further confirmed in a metastatic model of murine B16 melanoma: SM was found to effectively block metastatic dissemination of melanoma B16 cells in vivo, increase expression of E-cadherin and suppress expression of MMP-9 in lung metastatic foci. Altogether, our data provided valuable information for a better understanding of the antitumor activity of cyano enone-bearing semisynthetic compounds and revealed SM as a promising anti-metastatic drug candidate. Full article
(This article belongs to the Special Issue Translational Approach to Antitumor Drugs)
Show Figures

Graphical abstract

15 pages, 358 KiB  
Review
Molecular Iodine—An Expedient Reagent for Oxidative Aromatization Reactions of α,β-Unsaturated Cyclic Compounds
by Malose Jack Mphahlele
Molecules 2009, 14(12), 5308-5322; https://doi.org/10.3390/molecules14125308 - 16 Dec 2009
Cited by 64 | Viewed by 16128
Abstract
Prompted by the scant attention paid by published literature reviews to the applications of molecular iodine in oxidative aromatization reactions, we decided to review methods developed to-date involving iodine as an oxidant to promote aromatization of α,β-unsaturated cyclic compounds. Full article
(This article belongs to the Special Issue Organic Iodine Chemistry)
Show Figures

Figure 1

Back to TopTop