Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = *COCHO intermediate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2194 KB  
Article
Boosting C-C Coupling for Electrochemical CO2 Reduction over Novel Cu-Cubic Catalysts with an Amorphous Shell
by Hanlin Wang, Tian Wang, Gaigai Dong, Linbo Zhang, Fan Pan and Yunqing Zhu
Inorganics 2025, 13(5), 130; https://doi.org/10.3390/inorganics13050130 - 23 Apr 2025
Viewed by 929
Abstract
Currently, the electrochemical reduction of carbon dioxide faces significant challenges, including poor selectivity for C2 products and low conversion efficiency. An effective strategy for optimizing the reduction reaction pathway and enhancing catalytic performance involves manipulating highly unsaturated atomic sites on the catalyst’s [...] Read more.
Currently, the electrochemical reduction of carbon dioxide faces significant challenges, including poor selectivity for C2 products and low conversion efficiency. An effective strategy for optimizing the reduction reaction pathway and enhancing catalytic performance involves manipulating highly unsaturated atomic sites on the catalyst’s surface, thereby increasing the number of active sites. In this study, we employed sodium dodecylbenzenesulfonate (SDBS) as a surfactant in the electrodeposition method to synthesize copper cubes encapsulated with an amorphous shell (100 nm–250 nm) containing numerous defect sites on its surface. The electrocatalytic CO2 reduction reactions in an H-type reactor showed that, compared to ED-Cu synthesized without additives, AS (amorphous shell)-Cu-5 exhibited a Faradaic efficiency value for ethylene that was 1.7 times greater than that of ED-Cu while significantly decreasing the Faradaic efficiency of hydrogen production. In situ attenuated total reflectance surface-enhanced infrared spectroscopy (ATR-SEIRAS) revealed that introducing an amorphous shell and abundant defects altered both the intermediate species and reaction pathways on the AS-Cu-5 catalyst’s surface, favoring C2H4 formation. The density functional theory (DFT) calculations further confirmed that amorphous copper lowers the energy barrier required for C-C coupling, resulting in a marked enhancement in FE-C2H4. Therefore, additive-assisted electrodeposition presents a simple and rapid synthesis method for improving ethylene selectivity in copper catalysts. Full article
Show Figures

Graphical abstract

15 pages, 6312 KB  
Article
Effect of Equivalence Ratio on Pollutant Formation in CH4O/H2/NH3 Blend Combustion
by Jingyun Sun, Qianqian Liu, Mingyan Gu and Yang Wang
Molecules 2024, 29(1), 176; https://doi.org/10.3390/molecules29010176 - 28 Dec 2023
Cited by 4 | Viewed by 2003
Abstract
This paper investigates the effect of equivalence ratio on pollutant formation characteristics of CH4O/H2/NH3 ternary fuel combustion and analyzes the pollutant formation mechanisms of CO, CO2, and NOX at the molecular level. It was found [...] Read more.
This paper investigates the effect of equivalence ratio on pollutant formation characteristics of CH4O/H2/NH3 ternary fuel combustion and analyzes the pollutant formation mechanisms of CO, CO2, and NOX at the molecular level. It was found that lowering the equivalence ratio accelerates the decomposition of CH4O, H2, and NH3 in general. The fastest rate of consumption of each fuel was found at φ = 0.33, while the rates of CH4O and NH3 decomposition were similar for the φ = 0.66 and φ = 0.4. CO shows an inverted U-shaped trend with time, and peaks at φ = 0.5. The rate and amount of CO2 formation are inversely proportional to the equivalence ratio. The effect of equivalence ratio on CO2 is obvious when φ > 0.5. NO2 is the main component of NOX. When φ < 0.66, NOX shows a continuous increasing trend, while when φ ≥ 0.66, NOX shows an increasing and then stabilizing trend. Reaction path analysis showed that intermediates such as CH3 and CH4 were added to the CH4O to CH2O conversion stage as the equivalence ratio decreased with φ ≥ 0.5. New pathways, CH4O→CH3→CH2O and CH4O→CH3→CH4→CH2O, were added. At φ ≤ 0.5, new intermediates CHO2 and CH2O2 were added to the CH2O to CO2 conversion stage, and new pathways are added: CH2O→CO→CHO2→CO2, CH2O→CO→CO2, CH2O→CHO→CO→CHO2→CO2, and CH2O→CH2O2→CO2. The reduction in the number of radical reactions required for the conversion of NH3 to NO from five to two directly contributes to the large amount of NOX formation. Equivalent ratios from 1 to 0.33 corresponded to 12%, 21.4%, 34%, 46.95%, and 48.86% of NO2 remaining, respectively. This is due to the fact that as the equivalence ratio decreases, more O2 collides to form OH and some of the O2 is directly involved in the reaction forming NO2. Full article
Show Figures

Graphical abstract

Back to TopTop