Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = (exploratory) systemic constellations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2368 KiB  
Article
Alterations in SLC4A2, SLC26A7 and SLC26A9 Drive Acid–Base Imbalance in Gastric Neuroendocrine Tumors and Uncover a Novel Mechanism for a Co-Occurring Polyautoimmune Scenario
by Oriol Calvete, José Reyes, Hernán Valdés-Socin, Paloma Martin, Mónica Marazuela, Alicia Barroso, Javier Escalada, Antoni Castells, Raúl Torres-Ruiz, Sandra Rodríguez-Perales, María Currás-Freixes and Javier Benítez
Cells 2021, 10(12), 3500; https://doi.org/10.3390/cells10123500 - 10 Dec 2021
Cited by 8 | Viewed by 3748
Abstract
Autoimmune polyendocrine syndrome (APS) is assumed to involve an immune system malfunction and entails several autoimmune diseases co-occurring in different tissues of the same patient; however, they are orphans of its accurate diagnosis, as its genetic basis and pathogenic mechanism are not understood. [...] Read more.
Autoimmune polyendocrine syndrome (APS) is assumed to involve an immune system malfunction and entails several autoimmune diseases co-occurring in different tissues of the same patient; however, they are orphans of its accurate diagnosis, as its genetic basis and pathogenic mechanism are not understood. Our previous studies uncovered alterations in the ATPase H+/K+ Transporting Subunit Alpha (ATP4A) proton pump that triggered an internal cell acid–base imbalance, offering an autoimmune scenario for atrophic gastritis and gastric neuroendocrine tumors with secondary autoimmune pathologies. Here, we propose the genetic exploration of APS involving gastric disease to understand the underlying pathogenic mechanism of the polyautoimmune scenario. The whole exome sequencing (WES) study of five autoimmune thyrogastric families uncovered different pathogenic variants in SLC4A2, SLC26A7 and SLC26A9, which cotransport together with ATP4A. Exploratory in vitro studies suggested that the uncovered genes were involved in a pathogenic mechanism based on the alteration of the acid–base balance. Thus, we built a custom gene panel with 12 genes based on the suggested mechanism to evaluate a new series of 69 APS patients. In total, 64 filtered putatively damaging variants in the 12 genes of the panel were found in 54.17% of the studied patients and none of the healthy controls. Our studies reveal a constellation of solute carriers that co-express in the tissues affected with different autoimmune diseases, proposing a unique genetic origin for co-occurring pathologies. These results settle a new-fangled genetics-based mechanism for polyautoimmunity that explains not only gastric disease, but also thyrogastric pathology and disease co-occurrence in APS that are different from clinical incidental findings. This opens a new window leading to the prediction and diagnosis of co-occurring autoimmune diseases and clinical management of patients. Full article
Show Figures

Figure 1

16 pages, 1699 KiB  
Article
On the Road of Discovery with Systemic Exploratory Constellations: Potentials of Online Constellation Exercises about Sustainability Transitions
by Antje Disterheft, Denis Pijetlovic and Georg Müller-Christ
Sustainability 2021, 13(9), 5101; https://doi.org/10.3390/su13095101 - 1 May 2021
Cited by 4 | Viewed by 3965
Abstract
Sustainability transitions are shaped by specific dynamics, dependencies, and influences among the actors and elements that are part of the system. Systemic constellations as a social science research method can offer tangible visualizations of such system dynamics and thereby extract valuable, often hidden [...] Read more.
Sustainability transitions are shaped by specific dynamics, dependencies, and influences among the actors and elements that are part of the system. Systemic constellations as a social science research method can offer tangible visualizations of such system dynamics and thereby extract valuable, often hidden knowledge for research. This article builds on two online exploratory system constellation exercises about sustainability transitions, with two major objectives: (i) to introduce and disseminate (exploratory) systemic constellations as a method for (sustainability) research, and (ii) to extract their potential for (online) collaborative and transdisciplinary research, with a focus on sustainability transitions. Our exploratory research design includes participatory action research that took place during the virtual International Sustainability Transitions Conference 2020, Vienna, Austria. Data were analyzed following an interpretative-hermeneutic approach. The main findings consist of visualizations about sustainability transition dynamics between selected actors in Germany and Portugal that are discussed in light of the literature on constellation work and sustainability transitions, triggering new assumptions: (i) a strong sustainability narrative does not (necessarily) lead to action and transformation and (ii) transformation requires integrating narratives beyond weak and strong sustainability. We conclude with a list of potentials of exploratory constellations for sustainability research and online formats that offer novelties such as a constant bird-eye perspective on the system while simultaneously engaging with the system. Full article
(This article belongs to the Special Issue Emerging Research on Socio-Technological Sustainability Transitions)
Show Figures

Figure 1

14 pages, 207 KiB  
Article
Relative Expression of Vitamin D Hydroxylases, CYP27B1 and CYP24A1, and of Cyclooxygenase-2 and Heterogeneity of Human Colorectal Cancer in Relation to Age, Gender, Tumor Location, and Malignancy: Results from Factor and Cluster Analysis
by Wolfgang Brozek, Teresa Manhardt, Enikö Kállay, Meinrad Peterlik and Heide S. Cross
Cancers 2012, 4(3), 763-776; https://doi.org/10.3390/cancers4030763 - 26 Jul 2012
Cited by 23 | Viewed by 9309
Abstract
Previous studies on the significance of vitamin D insufficiency and chronic inflammation in colorectal cancer development clearly indicated that maintenance of cellular homeostasis in the large intestinal epithelium requires balanced interaction of 1,25-(OH)2D3 and prostaglandin cellular signaling networks. The present [...] Read more.
Previous studies on the significance of vitamin D insufficiency and chronic inflammation in colorectal cancer development clearly indicated that maintenance of cellular homeostasis in the large intestinal epithelium requires balanced interaction of 1,25-(OH)2D3 and prostaglandin cellular signaling networks. The present study addresses the question how colorectal cancer pathogenesis depends on alterations of activities of vitamin D hydroxylases, i.e., CYP27B1-encoded 25-hydroxyvitamin D-1a-hydroxylase and CYP24A1-encoded 25-hydroxyvitamin D-24-hydroxylase, and inflammation-induced cyclooxygenase-2 (COX-2). Data from 105 cancer patients on CYP27B1, VDR, CYP24A1, and COX-2 mRNA expression in relation to tumor grade, anatomical location, gender and age were fit into a multivariate model of exploratory factor analysis. Nearly identical results were obtained by the principal factor and the maximum likelihood method, and these were confirmed by hierarchical cluster analysis: Within the eight mutually dependent variables studied four independent constellations were found that identify different features of colorectal cancer pathogenesis: (i) Escape of COX-2 activity from restraints by the CYP27B1/VDR system can initiate cancer growth anywhere in the colorectum regardless of age and gender; (ii) variations in COX-2 expression are mainly responsible for differences in cancer incidence in relation to tumor location; (iii) advancing age has a strong gender-specific influence on cancer incidence; (iv) progression from well differentiated to undifferentiated cancer is solely associated with a rise in CYP24A1 expression. Full article
(This article belongs to the Special Issue System Biology in Cancer Research)
Show Figures

Graphical abstract

Back to TopTop