Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = water erosion
Page = 2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 8195 KB  
Article
Assessment of Soil Loss from Land Cover Changes in the Nan River Basin, Thailand
by Kwanchai Pakoksung
GeoHazards 2024, 5(1), 1-21; https://doi.org/10.3390/geohazards5010001 - 4 Jan 2024
Cited by 4 | Viewed by 4447
Abstract
This study investigates soil loss erosion dynamics in the Nan River Basin, Thailand, focusing on the impact of land cover changes. Utilizing the Universal Soil Loss Equation (USLE) model, key factors, including rainfall erosivity, soil erodibility, topography, and land cover, are analyzed for [...] Read more.
This study investigates soil loss erosion dynamics in the Nan River Basin, Thailand, focusing on the impact of land cover changes. Utilizing the Universal Soil Loss Equation (USLE) model, key factors, including rainfall erosivity, soil erodibility, topography, and land cover, are analyzed for the years 2001 to 2019. The findings reveal a substantial increase in human-induced soil erosion, emphasizing the pressing need for effective mitigation measures. Severity classification demonstrates shifting patterns, prompting targeted conservation strategies. The examination of land cover changes indicates significant alterations in the satellite image (MODIS), particularly an increase in Deciduous forest (~13.21%), Agriculture (~0.18%), and Paddy (~0.43%), and decrease in Evergreen Forest (~13.73%) and Water (~0.12%) cover types. Deciduous forest and Agriculture, associated with the highest soil loss rates, underscore the environmental consequences of specific land use practices. Notably, the increase in Deciduous forest and Agriculture significantly contributes to changes in soil loss rates, revealing the interconnectedness of land cover changes and soil erosion in ~18.05% and ~8.67%, respectively. This study contributes valuable insights for informed land management decisions and lays a foundation for future research in soil erosion dynamics. Additionally, the percentage increase in Agriculture corresponds to a notable rise in soil loss rates, underscoring the urgency for sustainable land use practices. Full article
Show Figures

Figure 1

21 pages, 3436 KB  
Article
Geomorphic Response of the Georgia Bight Coastal Zone to Accelerating Sea Level Rise, Southeastern USA
by Randall W. Parkinson and Shimon Wdowinski
Coasts 2024, 4(1), 1-20; https://doi.org/10.3390/coasts4010001 - 22 Dec 2023
Cited by 4 | Viewed by 3322
Abstract
Synthesis of geologic and chronologic data generated from Holocene sedimentary sequences recovered along the inner continental shelf, shoreface, and modern coastal zone of the Georgia Bight reveal a synchronous sequence of paleoenvironmental events that occurred in response to rate of sea level rise [...] Read more.
Synthesis of geologic and chronologic data generated from Holocene sedimentary sequences recovered along the inner continental shelf, shoreface, and modern coastal zone of the Georgia Bight reveal a synchronous sequence of paleoenvironmental events that occurred in response to rate of sea level rise tipping points. During the early Holocene (11.7–8.2 cal kyr BP), the paleoshoreline was overstepped and submerged by rapidly rising seas that averaged ~5 mm yr−1. Rates of rise during the middle Holocene (8.2–4.2 cal kyr BP) averaged ~2 mm yr−1 and this deceleration resulted in the formation of coastal environments and sedimentary sequences that were subsequently reworked as the shoreface continued its landward and upward migration. The modern coastal zone emerged commensurate with the late Holocene (4.2–0 cal kyr BP), when the rate of sea level rise averaged <1 mm yr−1. Analysis of water level data collected at six NOAA tide gauge stations located along the Georgia Bight coast indicates the rate of relative sea level rise has increased from a historical average of 3.6 ± 0.2 mm yr−1 (<1972 to 2022) to 6.6 ± 0.8 (1993 to 2022) and during the 21st century it has averaged 9.8 ± 0.3 mm yr−1 (2003 to 2022). The current rate of sea level rise is nearly double the early Holocene rate of rise. Based upon a novel application of the principle of uniformitarianism (i.e., the past is the key to the future), the likely geomorphic trajectory of the Georgia Bight coastal zone under conditions of 21st century accelerating sea level rise will be one of increasing instability (e.g., coastal erosion) and flooding (e.g., overwash, breaching). Evidence of an emerging instability within the coastal zone has been previously reported throughout the region and supports the trajectory of geomorphic change proposed herein. This will ultimately result in the submergence of existing landscapes and replacement by estuarine and marine environments, which may hasten in pace and scale given the current rate of sea level rise is expected to continue accelerating throughout this century. These findings have not been previously reported and should be considered by coastal practitioners responsible for conceptualizing risk, as well as the formulation and implementation of adaptation action plans designed to mitigate threats to the built and natural environment induced by climate change. Full article
Show Figures

Figure 1

Back to TopTop