Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = the limit cycle
Page = 2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 2439 KB  
Article
Influence of Nanoconfinement on the Hydrogen Release Processes from Sodium Alanate
by Kenneth Tuul and Rasmus Palm
Reactions 2021, 2(1), 1-9; https://doi.org/10.3390/reactions2010001 - 18 Jan 2021
Cited by 11 | Viewed by 3309
Abstract
Sodium alanate (NaAlH4) is a prospective H2 storage material for stationary and mobile applications, as NaAlH4 contains 7.4 wt% of H2, and it is possible to do multiple H2 release and accumulation cycles. Nanoconfinement is a [...] Read more.
Sodium alanate (NaAlH4) is a prospective H2 storage material for stationary and mobile applications, as NaAlH4 contains 7.4 wt% of H2, and it is possible to do multiple H2 release and accumulation cycles. Nanoconfinement is a potential solution to enhance the H2 release properties of NaAlH4. To optimize the supporting material and the synthesis method used for the nanoconfinement of NaAlH4, a better understanding of the influence of nanoconfinement on the H2 release processes is necessary. Thus, the H2 release from bulk, purely nanoconfined, and intermediate NaAlH4 is measured at different temperature ramp rates, and the characteristic parameters for each hydrogen release process are determined. Activation energies for each process are determined using the Kissinger method, and the effect of nanoconfinement on the activation energies is analysed. The impact of nanoconfinement on the H2 release processes from NaAlH4 and the limitations of each process in case of bulk and nanoconfined NaAlH4 are presented and discussed. Nanoconfinement of NaAlH4 decreases activation energies of the initial reversible H2 release steps to between 30 and 45 kJ mol−1 and increased the activation energy of the last irreversible H2 release step to over 210 kJ mol−1. Full article
(This article belongs to the Special Issue Hydrogen Production and Storage)
Show Figures

Figure 1

11 pages, 5619 KB  
Article
Recyclable Porous Glass-Ceramics from the Smelting of MSWI Bottom Ash
by Patricia Rabelo Monich, Hugo Lucas, Bernd Friedrich and Enrico Bernardo
Ceramics 2021, 4(1), 1-11; https://doi.org/10.3390/ceramics4010001 - 29 Dec 2020
Cited by 2 | Viewed by 4136
Abstract
Material from the electric arc furnace smelting of municipal solid waste incineration (MSWI) bottom ash was easily converted into highly porous glass-ceramics by a combination of inorganic gel casting and sinter-crystallization at 1000 °C. In particular, the gelation of aqueous suspensions of fine [...] Read more.
Material from the electric arc furnace smelting of municipal solid waste incineration (MSWI) bottom ash was easily converted into highly porous glass-ceramics by a combination of inorganic gel casting and sinter-crystallization at 1000 °C. In particular, the gelation of aqueous suspensions of fine glass powders, transformed into “green” foams by intensive mechanical stirring, occurred with a limited addition of alkali activator (1 M NaOH). The products coupled the stabilization of pollutants with good mechanical properties (e.g., compressive strength approaching 4 MPa). Interestingly, they could be used also as raw material for new glass-ceramic foams, obtained by the same gel casting and sintering method, with no degradation of chemical stability. Limitations in the crushing strength, derived from the limited viscous flow densification of semi-crystalline powders, were overcome by mixing powders from recycled foams with 30 wt% soda-lime glass. The new products finally featured an even higher strength-to-density ratio than the foams from the first cycle. Full article
(This article belongs to the Special Issue Waste-Derived Functional Ceramic and Glass-Based Products)
Show Figures

Graphical abstract

13 pages, 2569 KB  
Article
Testing and Evaluation of Anchor Channels under Fatigue Loading
by Thilo Fröhlich and Dieter Lotze
CivilEng 2021, 2(1), 1-13; https://doi.org/10.3390/civileng2010001 - 24 Dec 2020
Cited by 2 | Viewed by 3810
Abstract
Cast-in anchor channels are used to connect steel components to concrete structures e.g., for elevators, cranes or machines, where repeated load cycles require verification against fatigue failure. The fatigue resistance of anchor channels may be determined by tests according to the interactive method, [...] Read more.
Cast-in anchor channels are used to connect steel components to concrete structures e.g., for elevators, cranes or machines, where repeated load cycles require verification against fatigue failure. The fatigue resistance of anchor channels may be determined by tests according to the interactive method, which provides a complete description of the S/N curve from one to infinite load cycles according to the current assessment document. This procedure differs from conventional fatigue concepts, which do not consider loads that are part of low cycle fatigue, but also question the general existence of an endurance limit. An alternative approach presented in this paper is based on the assumption that the S/N curve can be approximated by a bilinear function. The procedure for the evaluation of fatigue tests on anchor channels embedded in concrete is described. A comparison with the current qualification criteria is given by a test example to discuss the applicability of the proposed method. Full article
(This article belongs to the Special Issue Connections in Concrete)
Show Figures

Figure 1

10 pages, 3217 KB  
Article
Hybrid Cathodes Composed of K3V2(PO4)3 and Carbon Materials with Boosted Charge Transfer for K-Ion Batteries
by Xianghua Zhang, Xinyi Kuang, Hanwen Zhu, Ni Xiao, Qi Zhang, Xianhong Rui, Yan Yu and Shaoming Huang
Surfaces 2020, 3(1), 1-10; https://doi.org/10.3390/surfaces3010001 - 11 Jan 2020
Cited by 15 | Viewed by 6339
Abstract
K-ion batteries (KIBs) have emerged as an auspicious alternative to Li-ion batteries (LIBs) owing to their uniform distribution, plentiful reserves, the low cost of K resources, and their similar physicochemical properties to Li resources. The development of KIBs is seriously limited by cathode [...] Read more.
K-ion batteries (KIBs) have emerged as an auspicious alternative to Li-ion batteries (LIBs) owing to their uniform distribution, plentiful reserves, the low cost of K resources, and their similar physicochemical properties to Li resources. The development of KIBs is seriously limited by cathode materials. Here, a hybrid of K3V2(PO4)3 (KVP) particles triple-coated by amorphous carbon, carbon nanotubes (CNTs), and reduced graphene oxide (rGO) nanosheets (KVP/C/CNT/rGO) was fabricated by a facile ball milling process followed by heat treatment. Consequently, a stable capacity of 57 mAh g−1 can be achieved at 0.2C, and a slow capacity decaying rate (0.06% per cycle) is displayed during 500 cycles under a high current density of 5C. The remarkable reversible capacity and excellent long-term cycling life are mainly due to the enhanced interwoven C/CNT/rGO networks and superior KVP crystal structure stability, which can provide multi-channel for fast electron transport and effective K+ diffusion. Full article
(This article belongs to the Special Issue Surface Science and Catalysis of Graphene-Related 2D Materials)
Show Figures

Graphical abstract

35 pages, 1828 KB  
Review
Regulation Systems of Bacteria such as Escherichia coli in Response to Nutrient Limitation and Environmental Stresses
by Kazuyuki Shimizu
Metabolites 2014, 4(1), 1-35; https://doi.org/10.3390/metabo4010001 - 30 Dec 2013
Cited by 148 | Viewed by 20931
Abstract
An overview was made to understand the regulation system of a bacterial cell such as Escherichia coli in response to nutrient limitation such as carbon, nitrogen, phosphate, sulfur, ion sources, and environmental stresses such as oxidative stress, acid shock, heat shock, and solvent [...] Read more.
An overview was made to understand the regulation system of a bacterial cell such as Escherichia coli in response to nutrient limitation such as carbon, nitrogen, phosphate, sulfur, ion sources, and environmental stresses such as oxidative stress, acid shock, heat shock, and solvent stresses. It is quite important to understand how the cell detects environmental signals, integrate such information, and how the cell system is regulated. As for catabolite regulation, F1,6B P (FDP), PEP, and PYR play important roles in enzyme level regulation together with transcriptional regulation by such transcription factors as Cra, Fis, CsrA, and cAMP-Crp. αKG plays an important role in the coordinated control between carbon (C)- and nitrogen (N)-limitations, where αKG inhibits enzyme I (EI) of phosphotransferase system (PTS), thus regulating the glucose uptake rate in accordance with N level. As such, multiple regulation systems are co-ordinated for the cell synthesis and energy generation against nutrient limitations and environmental stresses. As for oxidative stress, the TCA cycle both generates and scavenges the reactive oxygen species (ROSs), where NADPH produced at ICDH and the oxidative pentose phosphate pathways play an important role in coping with oxidative stress. Solvent resistant mechanism was also considered for the stresses caused by biofuels and biochemicals production in the cell. Full article
(This article belongs to the Special Issue Response to Environment and Stress Metabolism)
Show Figures

Figure 1

19 pages, 9636 KB  
Article
Interannual Variation in Phytoplankton Primary Production at A Global Scale
by Cecile S. Rousseaux and Watson W. Gregg
Remote Sens. 2014, 6(1), 1-19; https://doi.org/10.3390/rs6010001 - 19 Dec 2013
Cited by 146 | Viewed by 18914
Abstract
We used the NASA Ocean Biogeochemical Model (NOBM) combined with remote sensing data via assimilation to evaluate the contribution of four phytoplankton groups to the total primary production. First, we assessed the contribution of each phytoplankton groups to the total primary production at [...] Read more.
We used the NASA Ocean Biogeochemical Model (NOBM) combined with remote sensing data via assimilation to evaluate the contribution of four phytoplankton groups to the total primary production. First, we assessed the contribution of each phytoplankton groups to the total primary production at a global scale for the period 1998–2011. Globally, diatoms contributed the most to the total phytoplankton production (~50%, the equivalent of ~20 PgC∙y−1). Coccolithophores and chlorophytes each contributed ~20% (~7 PgC∙y−1) of the total primary production and cyanobacteria represented about 10% (~4 PgC∙y−1) of the total primary production. Primary production by diatoms was highest in the high latitudes (>40°) and in major upwelling systems (Equatorial Pacific and Benguela system). We then assessed interannual variability of this group-specific primary production over the period 1998–2011. Globally the annual relative contribution of each phytoplankton groups to the total primary production varied by maximum 4% (1–2 PgC∙y−1). We assessed the effects of climate variability on group-specific primary production using global (i.e., Multivariate El Niño Index, MEI) and “regional” climate indices (e.g., Southern Annular Mode (SAM), Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO)). Most interannual variability occurred in the Equatorial Pacific and was associated with climate variability as indicated by significant correlation (p < 0.05) between the MEI and the group-specific primary production from all groups except coccolithophores. In the Atlantic, climate variability as indicated by NAO was significantly correlated to the primary production of 2 out of the 4 groups in the North Central Atlantic (diatoms/cyanobacteria) and in the North Atlantic (chlorophytes and coccolithophores). We found that climate variability as indicated by SAM had only a limited effect on group-specific primary production in the Southern Ocean. These results provide a modeling and data assimilation perspective to phytoplankton partitioning of primary production and contribute to our understanding of the dynamics of the carbon cycle in the oceans at a global scale. Full article
(This article belongs to the Special Issue Remote Sensing of Phytoplankton)
Show Figures

20 pages, 1570 KB  
Article
Evolutionary Exploration of the Finitely Repeated Prisoners’ Dilemma—The Effect of Out-of-Equilibrium Play
by Kristian Lindgren and Vilhelm Verendel
Games 2013, 4(1), 1-20; https://doi.org/10.3390/g4010001 - 4 Jan 2013
Cited by 1 | Viewed by 8448
Abstract
The finitely repeated Prisoners’ Dilemma is a good illustration of the discrepancy between the strategic behaviour suggested by a game-theoretic analysis and the behaviour often observed among human players, where cooperation is maintained through most of the game. A game-theoretic reasoning based on [...] Read more.
The finitely repeated Prisoners’ Dilemma is a good illustration of the discrepancy between the strategic behaviour suggested by a game-theoretic analysis and the behaviour often observed among human players, where cooperation is maintained through most of the game. A game-theoretic reasoning based on backward induction eliminates strategies step by step until defection from the first round is the only remaining choice, reflecting the Nash equilibrium of the game. We investigate the Nash equilibrium solution for two different sets of strategies in an evolutionary context, using replicator-mutation dynamics. The first set consists of conditional cooperators, up to a certain round, while the second set in addition to these contains two strategy types that react differently on the first round action: The ”Convincer” strategies insist with two rounds of initial cooperation, trying to establish more cooperative play in the game, while the ”Follower” strategies, although being first round defectors, have the capability to respond to an invite in the first round. For both of these strategy sets, iterated elimination of strategies shows that the only Nash equilibria are given by defection from the first round. We show that the evolutionary dynamics of the first set is always characterised by a stable fixed point, corresponding to the Nash equilibrium, if the mutation rate is sufficiently small (but still positive). The second strategy set is numerically investigated, and we find that there are regions of parameter space where fixed points become unstable and the dynamics exhibits cycles of different strategy compositions. The results indicate that, even in the limit of very small mutation rate, the replicator-mutation dynamics does not necessarily bring the system with Convincers and Followers to the fixed point corresponding to the Nash equilibrium of the game. We also perform a detailed analysis of how the evolutionary behaviour depends on payoffs, game length, and mutation rate. Full article
Show Figures

Figure 1

7 pages, 908 KB  
Review
The Molecularly Crowded Cytoplasm of Bacterial Cells: Dividing Cells Contrasted with Viable but Non-culturable (VBNC) Bacterial Cells
by J. T. Trevors, J. D. van Elsas and A.K. Bej
Curr. Issues Mol. Biol. 2013, 15(1), 1-6; https://doi.org/10.21775/cimb.015.001 - 18 Apr 2012
Cited by 2 | Viewed by 870
Abstract
In this perspective, we discuss the cytoplasm in actively growing bacterial cells contrasted with viable but nonculturable (VBNC) cells. Actively growing bacterial cells contain a more molecularly crowded and organized cytoplasm, and are capable of completing their cell cycle resulting in cell division. [...] Read more.
In this perspective, we discuss the cytoplasm in actively growing bacterial cells contrasted with viable but nonculturable (VBNC) cells. Actively growing bacterial cells contain a more molecularly crowded and organized cytoplasm, and are capable of completing their cell cycle resulting in cell division. In contrast, nutrient starving bacteria in the physiological VBNC state are struggling to survive, as essential nutrients are not available or limiting. The cytoplasm is not as molecularly crowded as gene expression is minimal (e.g., ribosome, transcript, tRNA and protein numbers are decreased), energy pools are depleted, cells may exhibit leakage, and DNA is not being replicated for cell division. Full article
16 pages, 242 KB  
Article
Read / Write Performance for low memory passive HF RFID tag-reader system
by Chih-Cheng Ou Yang, B.S. Prabhu, Charlie Qu, Chi-Cheng Chu and Rajit Gadh
J. Theor. Appl. Electron. Commer. Res. 2009, 4(3), 1-16; https://doi.org/10.4067/S0718-18762009000300002 - 1 Dec 2009
Cited by 3 | Viewed by 926
Abstract
Certain applications of passive radio frequency identification (RFID), such as those in healthcare where the patient’s name, identification or medical record must be stored, require data within a tag to be encrypted. Encrypted data within an RFID tag has the potential to affect [...] Read more.
Certain applications of passive radio frequency identification (RFID), such as those in healthcare where the patient’s name, identification or medical record must be stored, require data within a tag to be encrypted. Encrypted data within an RFID tag has the potential to affect the accuracy or time to read/write the data by the reader. The current research measures and analyzes the effects of encryption, distance of read and delay time between two read/write cycles on the accuracy of the read or write function in an RFID infrastructure. The research also measures and evaluates the time to read/write (R/W) data that is encrypted and compares this encrypted data with unencrypted data.The data encryption standard (DES) encryption method is used in this research due to the limitation of the tag. A multi-functional interface has been developed for the user to test the performance using a High Frequency RFID reader. The measurements were repeated 1000 times for each R/W test.The performance of R/W accuracy is not affected in any meaningful way by encryption even though there is an increase in memory requirement from 88 bytes to 128 bytes. The effect of R/W distance shows that the performance decreases with increase in the distance between the reader and the tag.By inserting a small amount of delay time between different cycles, we can get a significant increase up to 100% accuracy for read function. However, the write accuracy is not affected as significantly as the read accuracy.The effect of the encryption on the time to write the data on the tag shows that encrypted data group takes 70 ~ 120 milliseconds for the transmission more than the unencrypted data group.We conclude that while the encryption does not have a significant impact on the accuracy of R/W, the distance and cycle delay does. Also, the encrypted data takes longer to write to the tag. Full article
Back to TopTop