Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = renewable energy targets
Page = 2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1873 KB  
Article
Natural Gas Matters: LNG and India’s Quest for Clean Energy
by Subhadip Ghosh, Rajarshi Majumder and Bidisha Chatterjee
Gases 2024, 4(1), 1-17; https://doi.org/10.3390/gases4010001 - 3 Feb 2024
Cited by 3 | Viewed by 6553
Abstract
India, the world’s most populous country, is the world’s third-largest emitter of greenhouse gases (GHGs). Despite employing several energy sources, it still relies heavily on coal, its primary energy source. Given India’s swiftly rising energy demand, this challenges meeting emission reduction targets. In [...] Read more.
India, the world’s most populous country, is the world’s third-largest emitter of greenhouse gases (GHGs). Despite employing several energy sources, it still relies heavily on coal, its primary energy source. Given India’s swiftly rising energy demand, this challenges meeting emission reduction targets. In recent years, India has significantly increased investments in renewables like solar and hydrogen. While commendable, these initiatives alone cannot meet the country’s expanding energy demands. In the short term, India must rely on both domestic and imported fossil fuels, with natural gas being the most environmentally friendly option. In this context, this paper attempts to forecast energy consumption, natural gas production, and consumption in India until 2050, using both univariate and multivariate forecasting methods. For multivariate forecasting, we have assumed two alternative possibilities for GDP growth: the business-as-usual and the high-growth scenarios. Each of our forecasts indicates a notable shortfall in the projected production of natural gas compared to the expected demand, implying our results are robust. Our model predicts that nearly 30–50 percent of India’s natural gas consumption will be met by imports, mainly in the form of LNG. Based on these findings, this paper recommends that Indian government policies emphasize increasing domestic natural gas production, importing LNG, and expanding renewable energy resources. Full article
(This article belongs to the Section Natural Gas)
Show Figures

Figure 1

20 pages, 26327 KB  
Article
Greenhouse Gas Savings Potential under Repowering of Onshore Wind Turbines and Climate Change: A Case Study from Germany
by Leon Sander, Christopher Jung and Dirk Schindler
Wind 2021, 1(1), 1-19; https://doi.org/10.3390/wind1010001 - 8 Sep 2021
Cited by 5 | Viewed by 5906
Abstract
Wind energy is crucial in German energy and climate strategies as it substitutes carbon-intensive fossil fuels and achieves substantial greenhouse gas (GHG) reductions. However, wind energy deployment currently faces several problems: low expansion rates, wind turbines at the end of their service life, [...] Read more.
Wind energy is crucial in German energy and climate strategies as it substitutes carbon-intensive fossil fuels and achieves substantial greenhouse gas (GHG) reductions. However, wind energy deployment currently faces several problems: low expansion rates, wind turbines at the end of their service life, or the end of remuneration. Repowering is a vital strategy to overcome these problems. This study investigates future annual GHG payback times and emission savings of repowered wind turbines. In total, 96 repowering scenarios covering a broad range of climatological, technical, economic, and political factors affecting wind energy output in 2025–2049 were studied. The results indicate that due to more giant wind turbines and geographical restrictions, the amount of repowerable sites is reduced significantly. Consequently, in most scenarios, emission savings will dramatically diminish compared to current savings. Even in the best-case scenario, the highest emission savings’ growth is at 11%. The most meaningful drivers of GHG payback time and emission savings are wind turbine type, geographical restrictions, and GHG emissions. In contrast, climate change impact on the wind resource is only marginal. Although repowering alone is insufficient for achieving climate targets, it is a substantial part of the wind energy strategy. It could be improved by the synergies of different measures presented in this study. The results emphasize that a massive expansion of wind energy is required to establish it as a cornerstone of the future energy mix. Full article
Show Figures

Figure 1

26 pages, 706 KB  
Article
Operation and Power Flow Control of Multi-Terminal DC Networks for Grid Integration of Offshore Wind Farms Using Genetic Algorithms
by Rodrigo Teixeira Pinto, Sílvio Fragoso Rodrigues, Edwin Wiggelinkhuizen, Ricardo Scherrer, Pavol Bauer and Jan Pierik
Energies 2013, 6(1), 1-26; https://doi.org/10.3390/en6010001 - 24 Dec 2012
Cited by 41 | Viewed by 9460
Abstract
For achieving the European renewable electricity targets, a significant contribution is foreseen to come from offshore wind energy. Considering the large scale of the future planned offshore wind farms and the increasing distances to shore, grid integration through a transnational DC network is [...] Read more.
For achieving the European renewable electricity targets, a significant contribution is foreseen to come from offshore wind energy. Considering the large scale of the future planned offshore wind farms and the increasing distances to shore, grid integration through a transnational DC network is desirable for several reasons. This article investigates a nine-node DC grid connecting three northern European countries — namely UK, The Netherlands and Germany. The power-flow control inside the multi-terminal DC grid based on voltage-source converters is achieved through a novel method, called distributed voltage control (DVC). In this method, an optimal power flow (OPF) is solved in order to minimize the transmission losses in the network. The main contribution of the paper is the utilization of a genetic algorithm (GA) to solve the OPF problem while maintaining an N-1 security constraint. After describing main DC network component models, several case studies illustrate the dynamic behavior of the proposed control method. Full article
(This article belongs to the Special Issue Smart Grid and the Future Electrical Network)
Show Figures

Figure 1

Back to TopTop