Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Journal = Sci
Section = Thermal Engineering and Sciences

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6768 KiB  
Article
Enhancing Surgical Tool Performance with Alumina-Based Coatings: An Engineering Analysis
by Cristiano Fragassa, Giovanni Pappalettera, Vincenzo Moramarco, Ana Pavlovic and Marco Arru
Sci 2024, 6(2), 24; https://doi.org/10.3390/sci6020024 - 19 Apr 2024
Cited by 1 | Viewed by 1642
Abstract
The present study investigates the utilization of ceramic coatings and insulation elements in the context of Cold Atmospheric Pressure Plasma (CAPP) surgery tools, highlighting how precise engineering modifications can influence surgical precision. The adoption of cold plasma in surgery can be reinforced by [...] Read more.
The present study investigates the utilization of ceramic coatings and insulation elements in the context of Cold Atmospheric Pressure Plasma (CAPP) surgery tools, highlighting how precise engineering modifications can influence surgical precision. The adoption of cold plasma in surgery can be reinforced by material advancements withstanding several specific challenges, including electrical and thermal protection. We explore the potential of alumina (Al2O3), renowned for its high dielectric strength and resistance, as a promising material solution for insulating electrodes. We evaluated the thermal performance of surgical tools concerning different insulation thicknesses. Our findings suggest that Al2O3–based coatings, with their superior characteristics, significantly enhance the usability of cold plasma technology, thus fostering its application in minimally invasive surgery. We examine the implications of these findings for the design of next-generation surgical instruments and propose avenues for future research. This work contributes to the field of biomedical engineering by showcasing the pivotal role of material science in advancing surgical technologies. Full article
(This article belongs to the Section Thermal Engineering and Sciences)
Show Figures

Figure 1

10 pages, 1695 KiB  
Technical Note
On Singular Perturbation of Neutron Point Kinetics in the Dynamic Model of a PWR Nuclear Power Plant
by Xiangyi Chen and Asok Ray
Sci 2020, 2(2), 36; https://doi.org/10.3390/sci2020036 - 27 May 2020
Cited by 4 | Viewed by 3468
Abstract
This short communication makes use of the principle of singular perturbation to approximate the ordinary differential equation (ODE) of prompt neutron (in the point kinetics model) as an algebraic equation. This approximation is shown to yield a large gain in computational efficiency without [...] Read more.
This short communication makes use of the principle of singular perturbation to approximate the ordinary differential equation (ODE) of prompt neutron (in the point kinetics model) as an algebraic equation. This approximation is shown to yield a large gain in computational efficiency without compromising any significant accuracy in the numerical simulation of primary coolant system dynamics in a PWR nuclear power plant. The approximate (i.e., singularly perturbed) model has been validated with a numerical solution of the original set of neutron point-kinetic and thermal–hydraulic equations. Both models use variable-step Runge–Kutta numerical integration. Full article
(This article belongs to the Section Thermal Engineering and Sciences)
Show Figures

Figure 1

Back to TopTop