Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Journal = QuBS
Section = Medical and Biological Applications

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1130 KiB  
Article
DNA Damage Induced by Fast Neutron and Gamma Rays Evaluated Using qPCR
by Youichirou Matuo, Miyabi Yanami, Shingo Tamaki, Yoko Akiyama, Yoshinobu Izumi, Fuminobu Sato, Isao Murata and Kikuo Shimizu
Quantum Beam Sci. 2025, 9(3), 23; https://doi.org/10.3390/qubs9030023 - 7 Jul 2025
Viewed by 276
Abstract
We developed a novel dosimetric method using DNA molecules as a radiation sensor. The amount of neutron or gamma rays irradiated DNA damage was determined by evaluating the amount of DNA serving as a template for qPCR. The absorbed doses in the samples [...] Read more.
We developed a novel dosimetric method using DNA molecules as a radiation sensor. The amount of neutron or gamma rays irradiated DNA damage was determined by evaluating the amount of DNA serving as a template for qPCR. The absorbed doses in the samples were estimated using the tally of the “t-product” in the data from the PHITS Monte Carlo particle transport simulation code. The neutron fluence for each sample was measured using the niobium activation reaction 93Nb (n, 2n) 92mNb, and the absorbed dose per neutron fluence was estimated to be 7.1 × 10−11 Gy/(n/cm2). Based on the PHITS modeling, the effects of neutron beams are attributed to the combination of proton and alpha particle beams. The results from qPCR showed that neutrons caused more DNA damage than gamma rays. The qPCR method demonstrated that neutron irradiation caused 1.13-fold more DNA damage compared to gamma ray irradiation; however, this result did not show a statistically significant difference. This method we developed, using DNA molecules as a radiation sensor, may be useful for biodosimetry. Full article
(This article belongs to the Section Medical and Biological Applications)
Show Figures

Figure 1

42 pages, 11257 KiB  
Review
Quantum Correlation Enhanced Optical Imaging
by Siddhant Vernekar and Jolly Xavier
Quantum Beam Sci. 2024, 8(3), 19; https://doi.org/10.3390/qubs8030019 - 2 Aug 2024
Cited by 3 | Viewed by 4268
Abstract
Quantum correlations, especially time correlations, are crucial in ghost imaging for significantly reducing the background noise on the one hand while increasing the imaging resolution. Moreover, the time correlations serve as a critical reference, distinguishing between signal and noise, which in turn enable [...] Read more.
Quantum correlations, especially time correlations, are crucial in ghost imaging for significantly reducing the background noise on the one hand while increasing the imaging resolution. Moreover, the time correlations serve as a critical reference, distinguishing between signal and noise, which in turn enable clear visualization of biological samples. Quantum imaging also addresses the challenge involved in imaging delicate biological structures with minimal photon exposure and sample damage. Here, we explore the recent progress in quantum correlation-based imaging, notably its impact on secure imaging and remote sensing protocols as well as on biological imaging. We also exploit the quantum characteristics of heralded single-photon sources (HSPS) combined with decoy state methods for secure imaging. This method uses Quantum Key Distribution (QKD) principles to reduce measurement uncertainties and protect data integrity. It is highly effective in low-photon number regimes for producing high-quality, noise-reduced images. The versatility of decoy state methods with WCSs (WCS) is also discussed, highlighting their suitability for scenarios requiring higher photon numbers. We emphasize the dual advantages of these techniques: improving image quality through noise reduction and enhancing data security with quantum encryption, suggesting significant potential for quantum imaging in various applications, from delicate biological imaging to secure quantum imaging and communication. Full article
(This article belongs to the Section Medical and Biological Applications)
Show Figures

Figure 1

Back to TopTop