Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Journal = Analytica
Section = Electroanalysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 735 KiB  
Review
Electroanalysis Advances in Pharmaceutical Sciences: Applications and Challenges Ahead
by Ram Kumar, Sushant Salwan, Pawan Kumar, Nisha Bansal and Bhupinder Kumar
Analytica 2025, 6(2), 12; https://doi.org/10.3390/analytica6020012 - 30 Mar 2025
Cited by 1 | Viewed by 1759
Abstract
Electroanalysis has emerged as a critical tool in the pharmaceutical industry, offering versatile and sensitive methods for drug analysis. This review explores the principles, techniques, and applications of electroanalysis in pharmaceuticals, emphasizing its role in drug development, quality assurance, pharmacokinetics, and environmental monitoring. [...] Read more.
Electroanalysis has emerged as a critical tool in the pharmaceutical industry, offering versatile and sensitive methods for drug analysis. This review explores the principles, techniques, and applications of electroanalysis in pharmaceuticals, emphasizing its role in drug development, quality assurance, pharmacokinetics, and environmental monitoring. Key electroanalytical methods, including voltammetry, potentiometry, and amperometry, are detailed along with their practical applications, such as detecting active pharmaceutical ingredients, monitoring drug metabolites, and ensuring product stability. Innovations in electrode materials and biosensors have enhanced their sensitivity and specificity, paving the way for advanced drug screening and therapeutic monitoring. Challenges like electrode fouling, selectivity issues, and regulatory constraints are discussed, along with strategies to overcome them. Future trends highlight the integration of nanotechnology, AI, and portable sensors to facilitate real-time analysis and personalized medicine. These advancements position electroanalysis as an indispensable component of modern pharmaceutical research and healthcare. Future perspectives emphasize the integration of nanotechnology and artificial intelligence (AI) to optimize experimental processes and data interpretation. This study also predicts the increased adoption of lab-on-a-chip systems and bioelectrochemical sensors to meet the growing demand for precision medicine and sustainable pharmaceutical practices. These advancements position electroanalysis as a cornerstone of pharmaceutical research, paving the way for more efficient drug development, improved patient outcomes and better environmental management. This comprehensive review underscores the transformative potential of electroanalysis in addressing the evolving challenges of the pharmaceutical industry and provides a foundation for future innovations. This review does not explicitly define the timeframe for the considered advancements. However, it discusses recent technological developments, including innovations in nanostructured electrodes, microfluidic integration, and AI-driven data analysis, indicating a focus on advancements primarily from the last few years, i.e., from 2020 to 2025. Full article
(This article belongs to the Section Electroanalysis)
Show Figures

Figure 1

14 pages, 4869 KiB  
Article
Development and Characterization of Conductive Ink Composed of Graphite and Carbon Black for Application in Printed Electrodes
by Thaís Cristina de Oliveira Cândido, Arnaldo César Pereira and Daniela Nunes da Silva
Analytica 2023, 4(4), 513-526; https://doi.org/10.3390/analytica4040035 - 4 Dec 2023
Cited by 10 | Viewed by 6660
Abstract
This work developed a conductive ink composed of carbonaceous material for printing electrochemical sensors. The optimized ink comprises graphite, carbon black, and nail polish, respectively (35.3:11.7:53%), as well as acetone as a solvent. The proportion was optimized with consideration of the binder’s solubilization, [...] Read more.
This work developed a conductive ink composed of carbonaceous material for printing electrochemical sensors. The optimized ink comprises graphite, carbon black, and nail polish, respectively (35.3:11.7:53%), as well as acetone as a solvent. The proportion was optimized with consideration of the binder’s solubilization, the ink’s suitability for the screen-printing process, and lower electrical resistance. The materials used, and the resulting ink, were analyzed by way of Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), Raman spectroscopy, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). The charge transfer resistance (Rct) obtained was 0.348 kΩ. The conductive ink was used to print an electrode on a PET substrate, and a flexible and disposable electrode was obtained. The electroactive area obtained was 13.7 cm2, which was calculated by the Randles-Sevcik equation. The applicability of the device was demonstrated with a redox probe, providing a sensitivity of 0.02 µ A L mmol−1. The conductive ink has adequate homogeneity for producing electrodes using the screen-printing technique, with a low estimated production cost of $ 0.09 mL−1. Full article
(This article belongs to the Section Electroanalysis)
Show Figures

Graphical abstract

14 pages, 5699 KiB  
Article
Gold Nanoparticles: A Didactic Step-by-Step of the Synthesis Using the Turkevich Method, Mechanisms, and Characterizations
by Ana Elisa F. Oliveira, Arnaldo César Pereira, Mayra A. C. Resende and Lucas Franco Ferreira
Analytica 2023, 4(2), 250-263; https://doi.org/10.3390/analytica4020020 - 8 Jun 2023
Cited by 72 | Viewed by 41130
Abstract
In this study, gold nanoparticles (AuNPs) were synthesized using the Turkevich method. This article explains the didactic step-by-step synthesis, showing pictures of the entire process, including a well-explained mechanism and characterization study. Synthesis involves the reduction of NaAuCl4 using sodium citrate at [...] Read more.
In this study, gold nanoparticles (AuNPs) were synthesized using the Turkevich method. This article explains the didactic step-by-step synthesis, showing pictures of the entire process, including a well-explained mechanism and characterization study. Synthesis involves the reduction of NaAuCl4 using sodium citrate at high temperatures (approximately 90 °C). The two main mechanisms used to explain AuNPs synthesis via the Turkevich method are also discussed. The first mechanism considers that a nanowire intermediary and the other proposes that aggregate intermediates are not formed at any time during the synthesis. The materials (NaAuCl4 and AuNPs) were characterized using UV-Vis spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and dynamic light scattering (DLS). The UV-Vis spectrum exhibits an absorption maximum at 521 nm because of the surface plasmon resonance (SPR) absorption band of the AuNPs. The SEM images of NaAuCl4 show crystals with cubic shapes, while the AuNPs have an average particle size of approximately 16–25 nm and particles that appear mainly spherical. To confirm the particle shapes, AFM was conducted, and it was possible to clearly observe individual spherical nanoparticles and their aggregates, and the average diameter of these AuNPs was approximately 12–19 nm. The XRD pattern of AuNPs showed four main characteristic peaks corresponding to the (111), (200), (220), and (311) planes, confirming the presence of cubic (FCC) gold. The DLS presented an average particle size of 3.3 ± 0.9 nm and a polydispersity index (PDI) of 0.574. AuNPs were synthesized using a simple and rapid method. The resulting spherical and ultra-small particles can be used in several applications. Full article
(This article belongs to the Section Electroanalysis)
Show Figures

Figure 1

18 pages, 2567 KiB  
Article
New Approaches in Electroanalytical Determination of Triazines-Based Pesticides in Natural Waters
by Fernanda C. O. L. Martins and Djenaine De Souza
Analytica 2023, 4(2), 84-101; https://doi.org/10.3390/analytica4020008 - 31 Mar 2023
Cited by 4 | Viewed by 2093
Abstract
This study describes the preparation and use of a dental amalgam electrode for the voltammetric determination of triazine-based pesticides ametryn, atrazine, and simazine in natural waters, using square wave voltammetry. The experimental and voltammetric parameters were previously optimized, and analytical curves were constructed [...] Read more.
This study describes the preparation and use of a dental amalgam electrode for the voltammetric determination of triazine-based pesticides ametryn, atrazine, and simazine in natural waters, using square wave voltammetry. The experimental and voltammetric parameters were previously optimized, and analytical curves were constructed to calculate analytical parameters. The detection limits presented values that were lower than the maximum limits of residues permitted in natural water by the Brazilian Environmental Agency, 100 µg L−1 (100 ppb), and around the values obtained using other electrodic surfaces or high-performance liquid chromatography, traditionally used in triazine levels determination. Furthermore, the recovery percentages in pure electrolyte and natural waters were around 100%, demonstrating that the methodology proposed is suitable for determining triazines contamination in natural water samples, based on an environmentally friendly procedure. Full article
(This article belongs to the Section Electroanalysis)
Show Figures

Figure 1

11 pages, 1577 KiB  
Article
Achievements of Mesoporous Carbon Solution and Single-Walled Carbon Nanotube Composite on the Sensitive Electrochemical Assay of Ivabradine
by Merve Yence, Leyla Karadurmus, Goksu Ozcelikay, Nurgul K. Bakirhan and Sibel A. Ozkan
Analytica 2021, 2(4), 195-205; https://doi.org/10.3390/analytica2040017 - 13 Dec 2021
Viewed by 3162
Abstract
In this study, the electrochemical determination of Ivabradine hydrochloride (IH) was studied in detail using a glassy carbon electrode (GCE) modified with mesoporous carbon solution (MCS) and carboxylated group linked single-walled carbon nanotube (SWCNT-COOH). The developed nanosensor showed a significant effect by remarkably [...] Read more.
In this study, the electrochemical determination of Ivabradine hydrochloride (IH) was studied in detail using a glassy carbon electrode (GCE) modified with mesoporous carbon solution (MCS) and carboxylated group linked single-walled carbon nanotube (SWCNT-COOH). The developed nanosensor showed a significant effect by remarkably increasing the IH signal compared with the bare GCE. Cyclic (CV) and differential pulse voltammetric (DPV) methods were applied to perform electrochemical analysis of IH in pH 3.0 BRB solutions. The calibration plot for IH with a detection limit of 1.47 × 10−7 M was obtained using the DPV technique in the range of 1–10 µM under optimum experimental conditions. The proposed method has been validated and applied for the detection of the IH tablet. The produced nanosensor was also performed for the determination of IH in serum and urine. Excellent recoveries of 98.4%, 98.0%, and 100.2% were achieved for tablet, serum, and urine analysis, respectively. Full article
(This article belongs to the Section Electroanalysis)
Show Figures

Figure 1

Back to TopTop