Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Authors = Yan Boulanger

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5432 KiB  
Article
Mitigation Potential of Ecosystem-Based Forest Management under Climate Change: A Case Study in the Boreal-Temperate Forest Ecotone
by Gabriel Landry, Evelyne Thiffault, Dominic Cyr, Lucas Moreau, Yan Boulanger and Caren Dymond
Forests 2021, 12(12), 1667; https://doi.org/10.3390/f12121667 - 30 Nov 2021
Cited by 21 | Viewed by 4717
Abstract
The forest sector can help reduce atmospheric CO2 through carbon (C) sequestration and storage and wood substitution of more polluting materials. However, climate change can have an impact on the C fluxes we are trying to leverage through forestry. We calculated the [...] Read more.
The forest sector can help reduce atmospheric CO2 through carbon (C) sequestration and storage and wood substitution of more polluting materials. However, climate change can have an impact on the C fluxes we are trying to leverage through forestry. We calculated the difference in CO2 eq. fluxes between ecosystem-based forest management and total forest conservation in the context of the temperate-boreal forest ecotone of Quebec (Canada), taking into account fluxes from forest ecosystems, wood product life cycle, and the substitution effect of wood products on markets. Over the 2020–2120 period, in the absence of climate change, ecosystem-based forest management and wood production caused average net annual emissions of 66.9 kilotonnes (kt) of CO2 eq. year−1 (relative to forest conservation), and 15.4 kt of CO2 eq. year−1 when assuming a 100% substitution effect of wood products. While management increased the ecosystem C sink, emissions from degradation of largely short-lived wood products caused the system to be a net source. Moreover, climate warming would decrease the capacity of ecosystems to sequester C and cause a shift towards more hardwood species. Our study highlights the need to adapt the industrial network towards an increased capacity of processing hardwoods into long-lived products and/or products with high substitution potential. Full article
(This article belongs to the Special Issue Carbon Stock and Sequestration in Forest Ecosystems)
Show Figures

Figure 1

11 pages, 4887 KiB  
Article
Mapping Local Effects of Forest Properties on Fire Risk across Canada
by Pierre Y. Bernier, Sylvie Gauthier, Pierre-Olivier Jean, Francis Manka, Yan Boulanger, André Beaudoin and Luc Guindon
Forests 2016, 7(8), 157; https://doi.org/10.3390/f7080157 - 27 Jul 2016
Cited by 71 | Viewed by 9389
Abstract
Fire is a dominant mechanism of forest renewal in most of Canada’s forests and its activity is predicted to increase over the coming decades. Individual fire events have been considered to be non-selective with regards to forest properties, but evidence now suggests otherwise. [...] Read more.
Fire is a dominant mechanism of forest renewal in most of Canada’s forests and its activity is predicted to increase over the coming decades. Individual fire events have been considered to be non-selective with regards to forest properties, but evidence now suggests otherwise. Our objective was therefore to quantify the effect of forest properties on fire selectivity or avoidance, evaluate the stability of these effects across varying burn rates, and use these results to map local fire risk across the forests of Canada. We used Canada-wide MODIS-based maps of annual fires and of forest properties to identify burned and unburned pixels for the 2002–2011 period and to bin them into classes of forest composition (% conifer and broadleaved deciduous), above-ground tree biomass and stand age. Logistic binomial regressions were then used to quantify fire selectivity by forest properties classes and by zones of homogeneous fire regime (HFR). Results suggest that fire exhibits a strong selectivity for conifer stands, but an even stronger avoidance of broadleaved stands. In terms of age classes, fire also shows a strong avoidance for young (0 to 29 year) stands. The large differences among regional burn rates do not significantly alter the overall preference and avoidance ratings. Finally, we combined these results on relative burn preference with regional burn rates to map local fire risks across Canada. Full article
Show Figures

Graphical abstract

21 pages, 8675 KiB  
Article
Quantifying Fire Cycle from Dendroecological Records Using Survival Analyses
by Dominic Cyr, Sylvie Gauthier, Yan Boulanger and Yves Bergeron
Forests 2016, 7(7), 131; https://doi.org/10.3390/f7070131 - 28 Jun 2016
Cited by 15 | Viewed by 6083
Abstract
Quantifying fire regimes in the boreal forest ecosystem is crucial for understanding the past and present dynamics, as well as for predicting its future dynamics. Survival analyses have often been used to estimate the fire cycle in eastern Canada because they make it [...] Read more.
Quantifying fire regimes in the boreal forest ecosystem is crucial for understanding the past and present dynamics, as well as for predicting its future dynamics. Survival analyses have often been used to estimate the fire cycle in eastern Canada because they make it possible to take into account the censored information that is made prevalent by the typically long fire return intervals and the limited scope of the dendroecological methods that are used to quantify them. Here, we assess how the true length of the fire cycle, the short-term temporal variations in fire activity, and the sampling effort affect the accuracy and precision of estimates obtained from two types of parametric survival models, the Weibull and the exponential models, and one non-parametric model obtained with the Cox regression. Then, we apply those results in a case area located in eastern Canada. Our simulation experiment confirms some documented concerns regarding the detrimental effects of temporal variations in fire activity on parametric estimation of the fire cycle. Cox regressions appear to provide the most accurate and robust estimator, being by far the least affected by temporal variations in fire activity. The Cox-based estimate of the fire cycle for the last 300 years in the case study area is 229 years (CI95: 162–407), compared with the likely overestimated 319 years obtained with the commonly used exponential model. Full article
Show Figures

Figure 1

Back to TopTop