Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Authors = Xinghao Du

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 10275 KiB  
Article
Tribological Behavior of GTL Base Oil Improved by Ni-Fe Layered Double Hydroxide Nanosheets
by Shuo Xiang, Xinghao Zhi, Hebin Bao, Yan He, Qinhui Zhang, Shigang Lin, Bo Hu, Senao Wang, Peng Lu, Xin Yang, Qiang Tian and Xin Du
Lubricants 2024, 12(5), 146; https://doi.org/10.3390/lubricants12050146 - 26 Apr 2024
Cited by 1 | Viewed by 1548
Abstract
The layered double hydroxide (LDH) has been practically applied in the field of tribology and materials science due to its unique physicochemical properties, weak bonding, flexible structural composition, and adjustable interlayer space. In this work, a series of ultrathin and flexible composition of [...] Read more.
The layered double hydroxide (LDH) has been practically applied in the field of tribology and materials science due to its unique physicochemical properties, weak bonding, flexible structural composition, and adjustable interlayer space. In this work, a series of ultrathin and flexible composition of Ni-Fe LDH samples were prepared via a cost-effective room-temperature co-precipitation process. Then, they were mechanically dispersed into GTL base oil and their lubricating performance were tested by a four-ball tribometer. It is found that the variation of Ni-Fe ratio of Ni-Fe LDH has a great influence on the improvement of lubricating performance of GTL base oil. At the same concentration (0.3 mg/mL), the Ni-Fe LDH with Ni/Fe ratio of 6 was demonstrated to exhibit the best lubricating performance and the AFC, WSD, the wear volume, surface roughness and average wear scar depth decreased 51.3%, 30.8%, 78.4%, 6.7% and 50.0%, respectively. SEM-EDS and X-ray photoelectron spectra illustrated that the tribo-chemical film consisting of iron oxides and NiO with better mechanical properties formed and slowly replaced the physical film, which resists scuffing and protect solid surface from severe collisions. Full article
(This article belongs to the Special Issue Tribology of 2D Nanomaterials)
Show Figures

Figure 1

26 pages, 5763 KiB  
Review
A Review of Lithium-Ion Battery Capacity Estimation Methods for Onboard Battery Management Systems: Recent Progress and Perspectives
by Jichang Peng, Jinhao Meng, Dan Chen, Haitao Liu, Sipeng Hao, Xin Sui and Xinghao Du
Batteries 2022, 8(11), 229; https://doi.org/10.3390/batteries8110229 - 9 Nov 2022
Cited by 52 | Viewed by 15239
Abstract
With the widespread use of Lithium-ion (Li-ion) batteries in Electric Vehicles (EVs), Hybrid EVs and Renewable Energy Systems (RESs), much attention has been given to Battery Management System (BMSs). By monitoring the terminal voltage, current and temperature, BMS can evaluate the status of [...] Read more.
With the widespread use of Lithium-ion (Li-ion) batteries in Electric Vehicles (EVs), Hybrid EVs and Renewable Energy Systems (RESs), much attention has been given to Battery Management System (BMSs). By monitoring the terminal voltage, current and temperature, BMS can evaluate the status of the Li-ion batteries and manage the operation of cells in a battery pack, which is fundamental for the high efficiency operation of EVs and smart grids. Battery capacity estimation is one of the key functions in the BMS, and battery capacity indicates the maximum storage capability of a battery which is essential for the battery State-of-Charge (SOC) estimation and lifespan management. This paper mainly focusses on a review of capacity estimation methods for BMS in EVs and RES and provides practical and feasible advice for capacity estimation with onboard BMSs. In this work, the mechanisms of Li-ion batteries capacity degradation are analyzed first, and then the recent processes for capacity estimation in BMSs are reviewed, including the direct measurement method, analysis-based method, SOC-based method and data-driven method. After a comprehensive review and comparison, the future prospective of onboard capacity estimation is also discussed. This paper aims to help design and choose a suitable capacity estimation method for BMS application, which can benefit the lifespan management of Li-ion batteries in EVs and RESs. Full article
Show Figures

Figure 1

12 pages, 1022 KiB  
Article
Analysis of Lipids in Pitaya Seed Oil by Ultra-Performance Liquid Chromatography–Time-of-Flight Tandem Mass Spectrometry
by Yijun Liu, Xinghao Tu, Lijing Lin, Liqing Du and Xingqin Feng
Foods 2022, 11(19), 2988; https://doi.org/10.3390/foods11192988 - 26 Sep 2022
Cited by 9 | Viewed by 3470
Abstract
Red pitaya (Hylocereus undatus) is an essential tropical fruit in China. To make more rational use of its processing, byproducts and fruit seeds, and the type, composition, and relative content of lipids in pitaya seed oil were analyzed by UPLC-TOF-MS/MS. The [...] Read more.
Red pitaya (Hylocereus undatus) is an essential tropical fruit in China. To make more rational use of its processing, byproducts and fruit seeds, and the type, composition, and relative content of lipids in pitaya seed oil were analyzed by UPLC-TOF-MS/MS. The results showed that the main fatty acids in pitaya seed oil were linoleic acid 42.78%, oleic acid 27.29%, and palmitic acid 16.66%. The ratio of saturated fatty acids to unsaturated fatty acids to polyunsaturated fatty acids was close to 1:1.32:1.75. The mass spectrum behavior and fracture mechanism of four lipid components, TG 54:5|TG 18:1_18:2_18:2, were analyzed. In addition, lipids are an essential indicator for evaluating the quality of oils and fats, and 152 lipids were isolated and identified from pitaya seed oil for the first time, including 136 glycerides and 16 phospholipids. The main components of glyceride and phospholipids were triglycerides and phosphatidyl ethanol, providing essential data support for pitaya seed processing and functional product development. Full article
(This article belongs to the Special Issue Food Lipids — Chemistry, Nutrition and Biotechnology)
Show Figures

Figure 1

10 pages, 3459 KiB  
Article
Extraordinary Room-Temperature Tensile Ductility of Pure Magnesium
by Xinghao Du, Haitao Chang, Cai Chen, Xiaofeng Huo, Wanpeng Li, Jacob C. Huang, Guosheng Duan and Baolin Wu
Materials 2019, 12(23), 3813; https://doi.org/10.3390/ma12233813 - 20 Nov 2019
Viewed by 2077
Abstract
Room-temperature tensile behavior and associated deformation mechanisms of multiple-axial forged (MAFed) pure Mg has been investigated. The as-MAFed Mg, with a coarsely recrystallized structure, exhibited a balanced strain-hardening behavior with strain, resulting in extraordinary mechanical properties with high ultimate stress (~200 MPa) and [...] Read more.
Room-temperature tensile behavior and associated deformation mechanisms of multiple-axial forged (MAFed) pure Mg has been investigated. The as-MAFed Mg, with a coarsely recrystallized structure, exhibited a balanced strain-hardening behavior with strain, resulting in extraordinary mechanical properties with high ultimate stress (~200 MPa) and extensive true strain (~0.30). The observation on the microstructural evolution suggests that the balanced strain-hardening behavior is correlated with de-twinning behavior cooperated with pyramidal <c + a> dislocations at the plastic straining stage. Full article
Show Figures

Figure 1

Back to TopTop