Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Authors = Subbiah Geetha

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2181 KiB  
Article
MULBER: Effective Android Malware Clustering Using Evolutionary Feature Selection and Mahalanobis Distance Metric
by Pradeepkumar Duraisamy Soundrapandian and Geetha Subbiah
Symmetry 2022, 14(10), 2221; https://doi.org/10.3390/sym14102221 - 21 Oct 2022
Cited by 1 | Viewed by 2563
Abstract
Symmetric and asymmetric patterns are fascinating phenomena that show a level of co-existence in mobile application behavior analyses. For example, static phenomena, such as information sharing through collaboration with known apps, is a good example of a symmetric model of communication, and app [...] Read more.
Symmetric and asymmetric patterns are fascinating phenomena that show a level of co-existence in mobile application behavior analyses. For example, static phenomena, such as information sharing through collaboration with known apps, is a good example of a symmetric model of communication, and app collusion, where apps collaborate dynamically with unknown malware apps, is an example of a serious threat with an asymmetric pattern. The symmetric nature of app collaboration can become vulnerable when a vulnerability called PendingIntent is exchanged during Inter-Component Communication (ICC). The PendingIntent (PI) vulnerability enables a flexible software model, where the PendingIntent creator app can temporarily share its own permissions and identity with the PendingIntent receiving app. The PendingIntent vulnerability does not require approval from the device user or Android OS to share the permissions and identity with other apps. This is called a PI leak, which can lead to malware attacks such as privilege escalation and component hijacking attacks. This vulnerability in the symmetric behavior of an application without validating an app’s privileges dynamically leads to the asymmetric phenomena that can damage the robustness of an entire system. In this paper, we propose MULBER, a lightweight machine learning method for the detection of Android malware communications that enables a cybersecurity system to analyze multiple patterns and learn from them to help prevent similar attacks and respond to changing behavior. MULBER can help cybersecurity teams to be more proactive in preventing dynamic PI-based communication threats and responding to active attacks in real time. MULBER performs a static binary analysis on the APK file and gathers approximately 10,755 features, reducing it to 42 key features by grouping the permissions under the above-mentioned four categories. Finally, MULBER learns from these multivariate features using evolutionary feature selection and the Mahalanobis distance metric and classifies them as either benign or malware apps. In an evaluation of 22,638 malware samples from recent Android APK malware databases such as Drebin and CICMalDroid-2020, MULBER outperformed others by clustering applications based on the Mahalanobis distance metric and detected 95.69% of malware with few false alarms and the explanations provided for each detection revealed the relevant properties of the detected malware. Full article
(This article belongs to the Special Issue Information Technologies and Electronics Ⅱ)
Show Figures

Graphical abstract

23 pages, 3087 KiB  
Article
Zero-Day Malware Detection and Effective Malware Analysis Using Shapley Ensemble Boosting and Bagging Approach
by Rajesh Kumar and Geetha Subbiah
Sensors 2022, 22(7), 2798; https://doi.org/10.3390/s22072798 - 6 Apr 2022
Cited by 26 | Viewed by 7343
Abstract
Software products from all vendors have vulnerabilities that can cause a security concern. Malware is used as a prime exploitation tool to exploit these vulnerabilities. Machine learning (ML) methods are efficient in detecting malware and are state-of-art. The effectiveness of ML models can [...] Read more.
Software products from all vendors have vulnerabilities that can cause a security concern. Malware is used as a prime exploitation tool to exploit these vulnerabilities. Machine learning (ML) methods are efficient in detecting malware and are state-of-art. The effectiveness of ML models can be augmented by reducing false negatives and false positives. In this paper, the performance of bagging and boosting machine learning models is enhanced by reducing misclassification. Shapley values of features are a true representation of the amount of contribution of features and help detect top features for any prediction by the ML model. Shapley values are transformed to probability scale to correlate with a prediction value of ML model and to detect top features for any prediction by a trained ML model. The trend of top features derived from false negative and false positive predictions by a trained ML model can be used for making inductive rules. In this work, the best performing ML model in bagging and boosting is determined by the accuracy and confusion matrix on three malware datasets from three different periods. The best performing ML model is used to make effective inductive rules using waterfall plots based on the probability scale of features. This work helps improve cyber security scenarios by effective detection of false-negative zero-day malware. Full article
(This article belongs to the Collection Cyber Situational Awareness in Computer Networks)
Show Figures

Figure 1

19 pages, 4724 KiB  
Article
Design of Waste Management System Using Ensemble Neural Networks
by Subbiah Geetha, Jayit Saha, Ishita Dasgupta, Rahul Bera, Isah A. Lawal and Seifedine Kadry
Designs 2022, 6(2), 27; https://doi.org/10.3390/designs6020027 - 2 Mar 2022
Cited by 9 | Viewed by 5700
Abstract
Waste management is an essential societal issue, and the classical and manual waste auditing methods are hazardous and time-consuming. In this paper, we introduce a novel method for waste detection and classification to address the challenges of waste management. The method uses a [...] Read more.
Waste management is an essential societal issue, and the classical and manual waste auditing methods are hazardous and time-consuming. In this paper, we introduce a novel method for waste detection and classification to address the challenges of waste management. The method uses a collection of deep neural networks to allow for accurate waste detection, classification, and waste size quantification. The trained neural network model is integrated into a mobile-based application for trash geotagging based on images captured by users on their smartphones. The tagged images are then connected to the cleaners’ database, and the nearest cleaners are notified of the waste. The experimental results using publicly available datasets show the effectiveness of the proposed method in terms of detection and classification accuracy. The proposed method achieved an accuracy of at least 90%, which surpasses that reported by other state-of-the-art methods on the same datasets. Full article
Show Figures

Figure 1

23 pages, 4757 KiB  
Article
An Efficient DenseNet-Based Deep Learning Model for Malware Detection
by Jeyaprakash Hemalatha, S. Abijah Roseline, Subbiah Geetha, Seifedine Kadry and Robertas Damaševičius
Entropy 2021, 23(3), 344; https://doi.org/10.3390/e23030344 - 15 Mar 2021
Cited by 213 | Viewed by 11631
Abstract
Recently, there has been a huge rise in malware growth, which creates a significant security threat to organizations and individuals. Despite the incessant efforts of cybersecurity research to defend against malware threats, malware developers discover new ways to evade these defense techniques. Traditional [...] Read more.
Recently, there has been a huge rise in malware growth, which creates a significant security threat to organizations and individuals. Despite the incessant efforts of cybersecurity research to defend against malware threats, malware developers discover new ways to evade these defense techniques. Traditional static and dynamic analysis methods are ineffective in identifying new malware and pose high overhead in terms of memory and time. Typical machine learning approaches that train a classifier based on handcrafted features are also not sufficiently potent against these evasive techniques and require more efforts due to feature-engineering. Recent malware detectors indicate performance degradation due to class imbalance in malware datasets. To resolve these challenges, this work adopts a visualization-based method, where malware binaries are depicted as two-dimensional images and classified by a deep learning model. We propose an efficient malware detection system based on deep learning. The system uses a reweighted class-balanced loss function in the final classification layer of the DenseNet model to achieve significant performance improvements in classifying malware by handling imbalanced data issues. Comprehensive experiments performed on four benchmark malware datasets show that the proposed approach can detect new malware samples with higher accuracy (98.23% for the Malimg dataset, 98.46% for the BIG 2015 dataset, 98.21% for the MaleVis dataset, and 89.48% for the unseen Malicia dataset) and reduced false-positive rates when compared with conventional malware mitigation techniques while maintaining low computational time. The proposed malware detection solution is also reliable and effective against obfuscation attacks. Full article
Show Figures

Figure 1

Back to TopTop