Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Authors = Stéphanie Girod

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2531 KiB  
Communication
High Electrocaloric Effect in Lead Scandium Tantalate Thin Films with Interdigitated Electrodes
by Veronika Kovacova, Sebastjan Glinsek, Stephanie Girod and Emmanuel Defay
Sensors 2022, 22(11), 4049; https://doi.org/10.3390/s22114049 - 27 May 2022
Cited by 7 | Viewed by 2264
Abstract
Lead scandium tantalate, Pb(Sc,Ta)O3, is an excellent electrocaloric material showing large temperature variations, good efficiency, and a broad operating temperature window. In form of multilayer ceramic capacitors integrated into a cooling device, the device can generate a temperature difference larger than [...] Read more.
Lead scandium tantalate, Pb(Sc,Ta)O3, is an excellent electrocaloric material showing large temperature variations, good efficiency, and a broad operating temperature window. In form of multilayer ceramic capacitors integrated into a cooling device, the device can generate a temperature difference larger than 13 K. Here, we investigate Pb(Sc,Ta)O3 in form of thin films prepared using the sol–gel chemical solution deposition method. We report the detailed fabrication process of high-quality films on various substrates such as c-sapphire and fused silica. The main originality of this research is the use of interdigitated top electrodes, enabling the application of very large electric fields in PST. We provide structural and electrical characterisation, as well as electrocaloric temperature variation, using the Maxwell relation approach. Films do not show a B-site ordering. The temperature variation from 7.2 to 15.7 K was measured on the Pb(Sc,Ta)O3 film on a c-sapphire substrate under the electric field of 1330 kV/cm between 14.5 °C and 50 °C. This temperature variation is the highest reported so far in Pb(Sc,Ta)O3 thin films. Moreover, stress seems to have an effect on the maximum permittivity temperature and thus electrocaloric temperature variation with temperature in Pb(Sc,Ta)O3 films. Tensile stress induced by fused silica shifts the “transition” of Pb(Sc,Ta)O3 to lower temperatures. This study shows the possibility for electrocaloric temperature variation tuning with stress conditions. Full article
(This article belongs to the Special Issue Application of Ferroelectric Thin Films in MEMS)
Show Figures

Graphical abstract

18 pages, 5840 KiB  
Article
Evidence of Negative Capacitance and Capacitance Modulation by Light and Mechanical Stimuli in Pt/ZnO/Pt Schottky Junctions
by Raoul Joly, Stéphanie Girod, Noureddine Adjeroud, Patrick Grysan and Jérôme Polesel-Maris
Sensors 2021, 21(6), 2253; https://doi.org/10.3390/s21062253 - 23 Mar 2021
Cited by 15 | Viewed by 4052
Abstract
We report on the evidence of negative capacitance values in a system consisting of metal-semiconductor-metal (MSM) structures, with Schottky junctions made of zinc oxide thin films deposited by Atomic Layer Deposition (ALD) on top of platinum interdigitated electrodes (IDE). The MSM structures were [...] Read more.
We report on the evidence of negative capacitance values in a system consisting of metal-semiconductor-metal (MSM) structures, with Schottky junctions made of zinc oxide thin films deposited by Atomic Layer Deposition (ALD) on top of platinum interdigitated electrodes (IDE). The MSM structures were studied over a wide frequency range, between 20 Hz and 1 MHz. Light and mechanical strain applied to the device modulate positive or negative capacitance and conductance characteristics by tuning the flow of electrons involved in the conduction mechanisms. A complete study was carried out by measuring the capacitance and conductance characteristics under the influence of both dark and light conditions, over an extended range of applied bias voltage and frequency. An impact-loss process linked to the injection of hot electrons at the interface trap states of the metal-semiconductor junction is proposed to be at the origin of the apparition of the negative capacitance values. These negative values are preceded by a local increase of the capacitance associated with the accumulation of trapped electrons at the interface trap states. Thus, we propose a simple device where the capacitance values can be modulated over a wide frequency range via the action of light and strain, while using cleanroom-compatible materials for fabrication. These results open up new perspectives and applications for the miniaturization of highly sensitive and low power consumption environmental sensors, as well as for broadband impedance matching in radio frequency applications. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

6 pages, 2126 KiB  
Article
Transparent Ferroelectric Capacitors on Glass
by Daniele Sette, Stéphanie Girod, Renaud Leturcq, Sebastjan Glinsek and Emmanuel Defay
Micromachines 2017, 8(10), 313; https://doi.org/10.3390/mi8100313 - 20 Oct 2017
Cited by 11 | Viewed by 5206
Abstract
We deposited transparent ferroelectric lead zirconate titanate thin films on fused silica and contacted them via Al-doped zinc oxide (AZO) transparent electrodes with an interdigitated electrode (IDE) design. These layers, together with a TiO2 buffer layer on the fused silica substrate, are [...] Read more.
We deposited transparent ferroelectric lead zirconate titanate thin films on fused silica and contacted them via Al-doped zinc oxide (AZO) transparent electrodes with an interdigitated electrode (IDE) design. These layers, together with a TiO2 buffer layer on the fused silica substrate, are highly transparent (>60% in the visible optical range). Fully crystallized Pb(Zr0.52Ti0.48)O3 (PZT) films are dielectrically functional and exhibit a typical ferroelectric polarization loop with a remanent polarization of 15 μC/cm2. The permittivity value of 650, obtained with IDE AZO electrodes is equivalent to the one measured with Pt electrodes patterned with the same design, which proves the high quality of the developed transparent structures. Full article
(This article belongs to the Special Issue Piezoelectric MEMS)
Show Figures

Figure 1

Back to TopTop