Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Authors = Shuaiyin Zhao ORCID = 0009-0001-7306-8677

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3267 KiB  
Systematic Review
Effectiveness of EV-A71 Vaccine and Its Impact on the Incidence of Hand, Foot and Mouth Disease: A Systematic Review
by Quanman Hu, Yaqi Xie, Fucang Ji, Fei Zhao, Xiaoru Song, Saiwei Lu, Zijie Li, Juan Geng, Haiyan Yang, Jinzhao Long, Yuefei Jin, Shuaiyin Chen and Guangcai Duan
Vaccines 2024, 12(9), 1028; https://doi.org/10.3390/vaccines12091028 - 8 Sep 2024
Cited by 5 | Viewed by 3369
Abstract
Background: Vaccination is a highly effective strategy for the prevention of enterovirus A71 (EV-A71)—hand, foot, and mouth disease (HFMD). Three inactivated EV-A71 vaccines in China have demonstrated remarkable efficacy against EV-A71-HFMD during clinical trials, exhibiting vaccine effectiveness (VE) exceeding 90% and few adverse [...] Read more.
Background: Vaccination is a highly effective strategy for the prevention of enterovirus A71 (EV-A71)—hand, foot, and mouth disease (HFMD). Three inactivated EV-A71 vaccines in China have demonstrated remarkable efficacy against EV-A71-HFMD during clinical trials, exhibiting vaccine effectiveness (VE) exceeding 90% and few adverse events (AEs). However, the effectiveness of vaccines in the real world and its impact on the epidemiological characteristics of HFMD after the use of EV-A71 inactivated vaccine are uncertain. Methods: The odd ratio (OR) and 95% confidence (CI) were used as the effect estimates of the meta-analysis in the test-negative design (TND), and the OR was used to calculate VE: VE = (1 − OR) × 100%. Results: According to the literature search strategy, a comprehensive search was conducted in PubMed, Web of Science (including Chinese Science Citation Database and MEDLINE), and Embase, and 18 records were ultimately included in this study. Subsequently, the overall VE and 95% CI of different vaccine doses were analyzed, with the one-dose vaccine at 66.9% (95% CI: 45.2–80.0%) and the two-dose vaccine at 84.2% (95% CI: 79.4–87.9%). Additionally, the most reported AEs were mild general reactions without any rare occurrences. Simultaneously, the widespread use of the EV-A71 vaccine would lead to a reduction in both the incidence of EV-A71-associated HFMD and severe cases caused by EV-A71. Conclusion: The administration of the two-dose EV-A71 vaccine is highly effective in preventing HFMD in the real world, and the widespread use of the EV-A71 vaccine leads to a reduction in the incidence of EV-A71-associated HFMD and that of severe cases caused by EV-A71. The findings suggest that administering the two-dose EV-A71 inactivated vaccine to children aged 6 months to 71 months can be effective in preventing EV-A71-associated HFMD, highlighting the need for developing a multivalent HFMD vaccine for preventing cases not caused by EV-A71. Full article
Show Figures

Figure 1

22 pages, 8380 KiB  
Review
Room Temperature Resistive Hydrogen Sensor for Early Safety Warning of Li-Ion Batteries
by Sixun Li, Shiyu Zhou, Shuaiyin Zhao, Tengfei Jin, Maohua Zhong, Zhuhao Cen, Peirong Gao, Wenjun Yan and Min Ling
Chemosensors 2023, 11(6), 344; https://doi.org/10.3390/chemosensors11060344 - 12 Jun 2023
Cited by 14 | Viewed by 3574
Abstract
Lithium-ion batteries (LIBs) have become one of the most competitive energy storage technologies. However, the “thermal runaway” of LIBs leads to serious safety issues. Early safety warning of LIBs is a prerequisite for the widely applications of power battery and large-scale energy storage [...] Read more.
Lithium-ion batteries (LIBs) have become one of the most competitive energy storage technologies. However, the “thermal runaway” of LIBs leads to serious safety issues. Early safety warning of LIBs is a prerequisite for the widely applications of power battery and large-scale energy storage systems. As reported, hydrogen (H2) could be generated due to the reaction of lithium metal and polymers inside the battery. The generation of H2 is some time earlier than the “thermal runaway”. Therefore, the rapid detection of trace hydrogen is the most effective method for early safety warning of LIBs. Resistive hydrogen sensors have attracted attention in recent years. In addition, they could be placed inside the LIB package for the initial hydrogen detection. Here, we overview the recent key advances of resistive room temperature (RT) H2 sensors, and explore possible applications inside LIB. We explored the underlying sensing mechanisms for each type of H2 sensor. Additionally, we highlight the approaches to develop the H2 sensors in large scale. Finally, the present review presents a brief conclusion and perspectives about the resistive RT H2 sensors for early safety warning of LIBs. Full article
(This article belongs to the Special Issue Gas Sensors and Electronic Noses for the Real Condition Sensing)
Show Figures

Figure 1

Back to TopTop