Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Authors = Shrey Kanvinde

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7375 KiB  
Review
Nanotherapeutic Approaches to Treat COVID-19-Induced Pulmonary Fibrosis
by Shrey Kanvinde, Suyash Deodhar, Tanmay A. Kulkarni and Chinmay M. Jogdeo
BioTech 2023, 12(2), 34; https://doi.org/10.3390/biotech12020034 - 5 May 2023
Cited by 1 | Viewed by 4552
Abstract
There have been significant collaborative efforts over the past three years to develop therapies against COVID-19. During this journey, there has also been a lot of focus on understanding at-risk groups of patients who either have pre-existing conditions or have developed concomitant health [...] Read more.
There have been significant collaborative efforts over the past three years to develop therapies against COVID-19. During this journey, there has also been a lot of focus on understanding at-risk groups of patients who either have pre-existing conditions or have developed concomitant health conditions due to the impact of COVID-19 on the immune system. There was a high incidence of COVID-19-induced pulmonary fibrosis (PF) observed in patients. PF can cause significant morbidity and long-term disability and lead to death in the long run. Additionally, being a progressive disease, PF can also impact the patient for a long time after COVID infection and affect the overall quality of life. Although current therapies are being used as the mainstay for treating PF, there is no therapy specifically for COVID-induced PF. As observed in the treatment of other diseases, nanomedicine can show significant promise in overcoming the limitations of current anti-PF therapies. In this review, we summarize the efforts reported by various groups to develop nanomedicine therapeutics to treat COVID-induced PF. These therapies can potentially offer benefits in terms of targeted drug delivery to lungs, reduced toxicity, and ease of administration. Some of the nanotherapeutic approaches may provide benefits in terms of reduced immunogenicity owing to the tailored biological composition of the carrier as per the patient needs. In this review, we discuss cellular membrane-based nanodecoys, extracellular vesicles such as exosomes, and other nanoparticle-based approaches for potential treatment of COVID-induced PF. Full article
Show Figures

Figure 1

24 pages, 391 KiB  
Review
Non-Viral Vectors for Delivery of Nucleic Acid Therapies for Cancer
by Shrey Kanvinde, Tanmay Kulkarni, Suyash Deodhar, Deep Bhattacharya and Aneesha Dasgupta
BioTech 2022, 11(1), 6; https://doi.org/10.3390/biotech11010006 - 7 Mar 2022
Cited by 30 | Viewed by 8362
Abstract
The research and development of non-viral gene therapy has been extensive over the past decade and has received a big push thanks to the recent successful approval of non-viral nucleic acid therapy products. Despite these developments, nucleic acid therapy applications in cancer have [...] Read more.
The research and development of non-viral gene therapy has been extensive over the past decade and has received a big push thanks to the recent successful approval of non-viral nucleic acid therapy products. Despite these developments, nucleic acid therapy applications in cancer have been limited. One of the main causes of this has been the imbalance in development of delivery vectors as compared with sophisticated nucleic acid payloads, such as siRNA, mRNA, etc. This paper reviews non-viral vectors that can be used to deliver nucleic acids for cancer treatment. It discusses various types of vectors and highlights their current applications. Additionally, it discusses a perspective on the current regulatory landscape to facilitate the commercial translation of gene therapy. Full article
20 pages, 3997 KiB  
Article
Simultaneous Quantitation of Lipid Biomarkers for Inflammatory Bowel Disease Using LC–MS/MS
by Yashpal S. Chhonker, Shrey Kanvinde, Rizwan Ahmad, Amar B. Singh, David Oupický and Daryl J. Murry
Metabolites 2021, 11(2), 106; https://doi.org/10.3390/metabo11020106 - 12 Feb 2021
Cited by 14 | Viewed by 4029
Abstract
Eicosanoids are key mediators and regulators of inflammation and oxidative stress that are often used as biomarkers for severity and therapeutic responses in various diseases. We here report a highly sensitive LC-MS/MS method for the simultaneous quantification of at least 66 key eicosanoids [...] Read more.
Eicosanoids are key mediators and regulators of inflammation and oxidative stress that are often used as biomarkers for severity and therapeutic responses in various diseases. We here report a highly sensitive LC-MS/MS method for the simultaneous quantification of at least 66 key eicosanoids in a widely used murine model of colitis. Chromatographic separation was achieved with Shim-Pack XR-ODSIII, 150 × 2.00 mm, 2.2 µm. The mobile phase was operated in gradient conditions and consisted of acetonitrile and 0.1% acetic acid in water with a total flow of 0.37 mL/min. This method is sensitive, with a limit of quantification ranging from 0.01 to 1 ng/mL for the various analytes, has a large dynamic range (200 ng/mL), and a total run time of 25 min. The inter- and intraday accuracy (85–115%), precision (≥85%), and recovery (40–90%) met the acceptance criteria per the US Food and Drug Administration guidelines. This method was successfully applied to evaluate eicosanoid metabolites in mice subjected to colitis versus untreated, healthy control mice. In summary, we developed a highly sensitive and fast LC−MS/MS method that can be used to identify biomarkers for inflammation and potentially help in prognosis of the disease in inflammatory bowel disease (IBD) patients, including the response to therapy. Full article
(This article belongs to the Special Issue MS-Based Drug Metabolism in Cancer Research)
Show Figures

Graphical abstract

Back to TopTop