Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Authors = Shima Jafarzadeh ORCID = 0000-0001-8617-0112

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2258 KiB  
Review
The Role of Ancient Grains in Alleviating Hunger and Malnutrition
by Mahsa Majzoobi, Shima Jafarzadeh, Shahla Teimouri, Mehran Ghasemlou, Milad Hadidi and Charles S. Brennan
Foods 2023, 12(11), 2213; https://doi.org/10.3390/foods12112213 - 31 May 2023
Cited by 17 | Viewed by 5470
Abstract
Meeting the United Nation’s sustainable development goals for zero hunger becomes increasingly challenging with respect to climate change and political and economic challenges. An effective strategy to alleviate hunger and its severe implications is to produce affordable, nutrient-dense, and sustainable food products. Ancient [...] Read more.
Meeting the United Nation’s sustainable development goals for zero hunger becomes increasingly challenging with respect to climate change and political and economic challenges. An effective strategy to alleviate hunger and its severe implications is to produce affordable, nutrient-dense, and sustainable food products. Ancient grains were long-forgotten due to the dominance of modern grains, but recently, they have been rediscovered as highly nutritious, healthy and resilient grains for solving the nutrition demand and food supply chain problems. This review article aims to critically examine the progress in this emerging field and discusses the potential roles of ancient grains in the fight against hunger. We provide a comparative analysis of different ancient grains with their modern varieties in terms of their physicochemical properties, nutritional profiles, health benefits and sustainability. A future perspective is then introduced to highlight the existing challenges of using ancient grains to help eradicate world hunger. This review is expected to guide decision-makers across different disciplines, such as food, nutrition and agronomy, and policymakers in taking sustainable actions against malnutrition and hunger. Full article
Show Figures

Figure 1

17 pages, 3751 KiB  
Article
Encapsulation of Orange Peel Oil in Biopolymeric Nanocomposites to Control Its Release under Different Conditions
by Sanaz Ghasemi, Elham Assadpour, Mohammad Saeed Kharazmi, Shima Jafarzadeh, Masoumeh Zargar and Seid Mahdi Jafari
Foods 2023, 12(4), 831; https://doi.org/10.3390/foods12040831 - 15 Feb 2023
Cited by 12 | Viewed by 3178
Abstract
Orange peel oil (OPO) is one of the most common flavorings used in the food industry, but it is volatile under environmental conditions (the presence of light, oxygen, humidity, and high temperatures). Encapsulation by biopolymer nanocomposites is a suitable and novel strategy to [...] Read more.
Orange peel oil (OPO) is one of the most common flavorings used in the food industry, but it is volatile under environmental conditions (the presence of light, oxygen, humidity, and high temperatures). Encapsulation by biopolymer nanocomposites is a suitable and novel strategy to improve the bioavailability and stability of OPO and its controlled release. In this study, we investigated the release profile of OPO from freeze-dried optimized nanocomposite powders as a function of pH (3, 7, 11) and temperature (30, 60, and 90 °C), and within a simulated salivary system. Finally, its release kinetics modelling was performed using experimental models. The encapsulation efficiency of OPO within the powders, along with the morphology and size of the particles, were also evaluated by an atomic force microscopy (AFM) analysis. The results showed that the encapsulation efficiency was in the range of 70–88%, and the nanoscale size of the particles was confirmed by AFM. The release profile showed that the lowest and the highest release rates were observed at the temperatures of 30 and 90 °C and in the pH values of 3 and 11, respectively, for all three samples. The Higuchi model provided the best model fitting of the experimental data for the OPO release of all the samples. In general, the OPO encapsulates prepared in this study showed promising characteristics for food flavoring applications. These results suggest that the encapsulation of OPO may be useful for controlling its flavor release under different conditions and during cooking. Full article
Show Figures

Figure 1

33 pages, 9995 KiB  
Review
Spectrophotometric Methods for Measurement of Antioxidant Activity in Food and Pharmaceuticals
by Marios C. Christodoulou, Jose C. Orellana Palacios, Golnaz Hesami, Shima Jafarzadeh, José M. Lorenzo, Rubén Domínguez, Andres Moreno and Milad Hadidi
Antioxidants 2022, 11(11), 2213; https://doi.org/10.3390/antiox11112213 - 8 Nov 2022
Cited by 150 | Viewed by 30987
Abstract
In recent years, there has been a growing interest in the application of antioxidants in food and pharmaceuticals due to their association with beneficial health effects against numerous oxidative-related human diseases. The antioxidant potential can be measured by various assays with specific mechanisms [...] Read more.
In recent years, there has been a growing interest in the application of antioxidants in food and pharmaceuticals due to their association with beneficial health effects against numerous oxidative-related human diseases. The antioxidant potential can be measured by various assays with specific mechanisms of action, including hydrogen atom transfer, single electron transfer, and targeted scavenging activities. Understanding the chemistry of mechanisms, advantages, and limitations of the methods is critical for the proper selection of techniques for the valid assessment of antioxidant activity in specific samples or conditions. There are various analytical techniques available for determining the antioxidant activity of biological samples, including food and plant extracts. The different methods are categorized into three main groups, such as spectrometry, chromatography, and electrochemistry techniques. Among these assays, spectrophotometric methods are considered the most common analytical technique for the determination of the antioxidant potential due to their sensitivity, rapidness, low cost, and reproducibility. This review covers the mechanism of actions and color changes that occur in each method. Furthermore, the advantages and limitations of spectrophotometric methods are described and discussed in this review. Full article
Show Figures

Graphical abstract

2 pages, 165 KiB  
Editorial
Renewable and Recyclable Polymeric Materials for Food Packaging: A New Open Special Issue in Materials
by Shima Jafarzadeh, Masoumeh Zargar and Mehrdad Forough
Materials 2022, 15(17), 5845; https://doi.org/10.3390/ma15175845 - 24 Aug 2022
Cited by 10 | Viewed by 1876
Abstract
“Renewable and Recyclable Polymeric Materials for Food Packaging” is a new open Special Issue of Materials that will publish original and review papers on new scientific and applied research, and the articles it contains will make a contribution to the discovery and understanding [...] Read more.
“Renewable and Recyclable Polymeric Materials for Food Packaging” is a new open Special Issue of Materials that will publish original and review papers on new scientific and applied research, and the articles it contains will make a contribution to the discovery and understanding of biodegradable and recyclable materials, their functional properties, characterization and applications [...] Full article
(This article belongs to the Special Issue Renewable and Recyclable Polymeric Materials for Food Packaging)
21 pages, 13508 KiB  
Review
Application of Red Cabbage Anthocyanins as pH-Sensitive Pigments in Smart Food Packaging and Sensors
by Reza Abedi-Firoozjah, Shima Yousefi, Mahshid Heydari, Faezeh Seyedfatehi, Shima Jafarzadeh, Reza Mohammadi, Milad Rouhi and Farhad Garavand
Polymers 2022, 14(8), 1629; https://doi.org/10.3390/polym14081629 - 18 Apr 2022
Cited by 125 | Viewed by 26969
Abstract
Anthocyanins are excellent antioxidant/antimicrobial agents as well as pH-sensitive indicators that provide new prospects to foster innovative smart packaging systems due to their ability to improve food shelf life and detect physicochemical and biological changes in packaged food. Compared with anthocyanins from other [...] Read more.
Anthocyanins are excellent antioxidant/antimicrobial agents as well as pH-sensitive indicators that provide new prospects to foster innovative smart packaging systems due to their ability to improve food shelf life and detect physicochemical and biological changes in packaged food. Compared with anthocyanins from other natural sources, red cabbage anthocyanins (RCAs) are of great interest in food packaging because they represent an acceptable color spectrum over a broad range of pH values. The current review addressed the recent advances in the application of RCAs in smart bio-based food packaging systems and sensors. This review was prepared based on the scientific reports found on Web of Science, Scopus, and Google Scholar from February 2000 to February 2022. The studies showed that the incorporation of RCAs in different biopolymeric films could affect their physical, mechanical, thermal, and structural properties. Moreover, the use of RCAs as colorimetric pH-responsive agents can reliably monitor the qualitative properties of the packaged food products in a real-time assessment. Therefore, the development of smart biodegradable films using RCAs is a promising approach to the prospect of food packaging. Full article
(This article belongs to the Special Issue Biopolymers for Food Packaging Films and Coatings)
Show Figures

Graphical abstract

19 pages, 2781 KiB  
Article
Enhancement in the Physico-Mechanical Functions of Seaweed Biopolymer Film via Embedding Fillers for Plasticulture Application—A Comparison with Conventional Biodegradable Mulch Film
by Hasan M, E.W.N. Chong, Shima Jafarzadeh, M.T. Paridah, Deepu A. Gopakumar, H.A. Tajarudin, Sabu Thomas and H.P.S. Abdul Khalil
Polymers 2019, 11(2), 210; https://doi.org/10.3390/polym11020210 - 26 Jan 2019
Cited by 70 | Viewed by 8458
Abstract
This study aimed to compare the performance of fabricated microbially induced precipitated calcium carbonate– (MB–CaCO3) based red seaweed (Kappaphycus alvarezii) bio-polymer film and commercial calcium carbonate– (C–CaCO3) based red seaweed bio-film with the conventional biodegradable mulch film. [...] Read more.
This study aimed to compare the performance of fabricated microbially induced precipitated calcium carbonate– (MB–CaCO3) based red seaweed (Kappaphycus alvarezii) bio-polymer film and commercial calcium carbonate– (C–CaCO3) based red seaweed bio-film with the conventional biodegradable mulch film. To the best of our knowledge, there has been limited research on the application of commercial CaCO3 (C–CaCO3) and microbially induced CaCO3 (MB–CaCO3) as fillers for the preparation of films from seaweed bio-polymer and comparison with biodegradable commercial plasticulture packaging. The results revealed that the mechanical, contact angle, and biodegradability properties of the polymer composite films incorporated with C–CaCO3 and MB–CaCO3 fillers were comparable or even superior than the conventional biodegradable mulch film. The seaweed polymer film incorporated with MB–CaCO3 showed the highest contact angle of 100.94°, whereas conventional biodegradable mulch film showed a contact angle of 90.25°. The enhanced contact angle of MB–CaCO3 resulted in high barrier properties, which is highly desired in the current scenario for plasticulture packaging application. The water vapor permeability of MB–CaCO3 based seaweed films was low (2.05 ± 1.06 g·m/m2·s·Pa) when compared to conventional mulch film (2.68 ± 0.35 g·m/m2·s·Pa), which makes the fabricated film an ideal candidate for plasticulture application. The highest tensile strength (TS) was achieved by seaweed-based film filled with commercial CaCO3 (84.92% higher than conventional mulch film). SEM images of the fractured surfaces of the fabricated films revealed the strong interaction between seaweed and fillers. Furthermore, composite films incorporated with MB–CaCO3 promote brighter film, better water barrier, hydrophobicity, and biodegradability compared to C–CaCO3 based seaweed polymer film and conventional mulch film. From this demonstrated work, it can be concluded that the fabricated MB–CaCO3 based seaweed biopolymer film will be a promising candidate for plasticulture and agricultural application. Full article
Show Figures

Graphical abstract

Back to TopTop