Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Authors = Robert M. Strongin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 940 KiB  
Article
A First-Tier Framework for Assessing Toxicological Risk from Vaporized Cannabis Concentrates
by Shawna Vreeke, David M. Faulkner, Robert M. Strongin and Echoleah Rufer
Toxics 2022, 10(12), 771; https://doi.org/10.3390/toxics10120771 - 9 Dec 2022
Cited by 2 | Viewed by 7511
Abstract
Vaporization is an increasingly prevalent means to consume cannabis, but there is little guidance for manufacturers or regulators to evaluate additive safety. This paper presents a first-tier framework for regulators and cannabis manufacturers without significant toxicological expertise to conduct risk assessments and prioritize [...] Read more.
Vaporization is an increasingly prevalent means to consume cannabis, but there is little guidance for manufacturers or regulators to evaluate additive safety. This paper presents a first-tier framework for regulators and cannabis manufacturers without significant toxicological expertise to conduct risk assessments and prioritize additives in cannabis concentrates for acceptance, elimination, or further evaluation. Cannabinoids and contaminants (e.g., solvents, pesticides, etc.) are excluded from this framework because of the complexity involved in their assessment; theirs would not be a first-tier toxicological assessment. Further, several U.S. state regulators have provided guidance for major cannabinoids and contaminants. Toxicological risk assessment of cannabis concentrate additives, like other types of risk assessment, includes hazard assessment, dose–response, exposure assessment, and risk characterization steps. Scarce consumption data has made exposure assessment of cannabis concentrates difficult and variable. Previously unpublished consumption data collected from over 54,000 smart vaporization devices show that 50th and 95th percentile users consume 5 and 57 mg per day on average, respectively. Based on these and published data, we propose assuming 100 mg per day cannabis concentrate consumption for first-tier risk assessment purposes. Herein, we provide regulators, cannabis manufacturers, and consumers a preliminary methodology to evaluate the health risks of cannabis concentrate additives. Full article
(This article belongs to the Section Novel Methods in Toxicology Research)
Show Figures

Figure 1

13 pages, 1838 KiB  
Article
Comparison of Chemotherapeutic Activities of Rhodamine-Based GUMBOS and NanoGUMBOS
by Nimisha Bhattarai, Mi Chen, Rocío L. Pérez, Sudhir Ravula, Robert M. Strongin, Karen McDonough and Isiah M. Warner
Molecules 2020, 25(14), 3272; https://doi.org/10.3390/molecules25143272 - 17 Jul 2020
Cited by 22 | Viewed by 4561
Abstract
Rhodamine derivatives have been widely investigated for their mitochondrial targeting and chemotherapeutic properties that result from their lipophilic cationic structures. In previous research, we have found that conversion of Rhodamine 6G into nanoGUMBOS, i.e., nanomaterials derived from a group of uniform materials based [...] Read more.
Rhodamine derivatives have been widely investigated for their mitochondrial targeting and chemotherapeutic properties that result from their lipophilic cationic structures. In previous research, we have found that conversion of Rhodamine 6G into nanoGUMBOS, i.e., nanomaterials derived from a group of uniform materials based on organic salts (GUMBOS), led to selective chemotherapeutic toxicity for cancer cells over normal cells. Herein, we investigate the chemotherapeutic activity of GUMBOS derived from four different rhodamine derivatives, two bearing an ester group, i.e., Rhodamine 123 (R123) and SNAFR-5, and two bearing a carboxylic acid group, i.e., rhodamine 110 (R110) and rhodamine B (RB). In this study, we evaluate (1) relative hydrophobicity via octanol–water partition coefficients, (2) cytotoxicity, and (3) cellular uptake in order to evaluate possible structure–activity relationships between these different compounds. Intriguingly, we found that while GUMBOS derived from R123 and SNAFR-5 formed nanoGUMBOS in aqueous medium, no distinct nanoparticles are observed for RB and R110 GUMBOS. Further investigation revealed that the relatively high water solubility of R110 and RB GUMBOS hinders nanoparticle formation. Subsequently, while R123 and SNAFR-5 displayed selective chemotherapeutic toxicity similar to that of previously investigated R6G nanoGUMBOS, the R110 and RB GUMBOS were lacking in this property. Additionally, the chemotherapeutic toxicities of R123 and SNAFR-5 nanoGUMBOS were also significantly greater than R110 and RB GUMBOS. Observed results were consistent with decreased cellular uptake of R110 and RB as compared to R123 and SNAFR-5 compounds. Moreover, these results are also consistent with previous observations that suggest that nanoparticle formation is critical to the observed selective chemotherapeutic properties as well as the chemotherapeutic efficacy of rhodamine nanoGUMBOS. Full article
(This article belongs to the Special Issue Ionic Liquids for Chemical and Biochemical Applications II)
Show Figures

Figure 1

11 pages, 532 KiB  
Communication
A Fast Response Highly Selective Probe for the Detection of Glutathione in Human Blood Plasma
by Yixing Guo, Xiaofeng Yang, Lovemore Hakuna, Aabha Barve, Jorge O. Escobedo, Mark Lowry and Robert M. Strongin
Sensors 2012, 12(5), 5940-5950; https://doi.org/10.3390/s120505940 - 8 May 2012
Cited by 82 | Viewed by 12769
Abstract
A fluorescent probe for glutathione (GSH) detection was developed. Our study indicates a possible mechanism which couples a conjugate addition and micelle-catalyzed large membered ring formation/elimination sequence. This method enables excellent selectivity towards GSH over other biological thiols such as cysteine (Cys) and [...] Read more.
A fluorescent probe for glutathione (GSH) detection was developed. Our study indicates a possible mechanism which couples a conjugate addition and micelle-catalyzed large membered ring formation/elimination sequence. This method enables excellent selectivity towards GSH over other biological thiols such as cysteine (Cys) and homocysteine (Hcy). The proposed method is precise with a relative standard deviation (R.S.D) lower than 6% (n = 3) and has been successfully applied to determine GSH in human plasma with recoveries between 99.2% and 102.3%. Full article
Show Figures

Graphical abstract

34 pages, 987 KiB  
Article
Chemomechanical Polymers as Sensors and Actuators for Biological and Medicinal Applications
by Hans-Jörg Schneider, Kazuaki Kato and Robert M. Strongin
Sensors 2007, 7(8), 1578-1611; https://doi.org/10.3390/s7081578 - 27 Aug 2007
Cited by 59 | Viewed by 16879
Abstract
Changes in the chemical environment can trigger large motions in chemomechanical polymers. The unique feature of such intelligent materials, mostly in the form of hydrogels, is therefore, that they serve as sensors and actuators at the same time, and do not require any [...] Read more.
Changes in the chemical environment can trigger large motions in chemomechanical polymers. The unique feature of such intelligent materials, mostly in the form of hydrogels, is therefore, that they serve as sensors and actuators at the same time, and do not require any measuring devices, transducers or power supplies. Until recently the most often used of these materials responded to changes in pH. Chemists are now increasingly using supramolecular recognition sites in materials, which are covalently bound to the polymer backbone. This allows one to use a nearly unlimited variety of guest (or effector) compounds in the environment for a selective response by automatically triggered size changes. This is illustrated with non-covalent interactions of effectors comprising of metal ions, isomeric organic compounds, including enantiomers, nucleotides, aminoacids, and peptides. Two different effector molecules can induce motions as functions of their concentration, thus representing a logical AND gate. This concept is particularly fruitful with effector compounds such as peptides, which only trigger size changes if, e.g. copper ions are present in the surroundings. Another principle relies on the fast formation of covalent bonds between an effector and the chemomechanical polymer. The most promising application is the selective interaction of covalently fixed boronic acid residues with glucose, which renders itself not only for sensing, but eventually also for delivery of drugs such as insulin. The speed of the responses can significantly increase by increasing the surface to volume ratio of the polymer particles. Of particular interest is the sensitivity increase which can be reached by downsizing the particle volume. Full article
(This article belongs to the Special Issue Physiological Sensing)
Show Figures

Back to TopTop