Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Authors = Raji Palanisamy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2751 KiB  
Article
Prickly Pear Fruit Extract: Capping Agent for the Sol–Gel Synthesis of Discrete Titanium Dioxide Nanoparticles and Sensitizer for Dye-Sensitized Solar Cell
by Radhika Rajendhiran, Raji Atchudan, Jayabal Palanisamy, Athinarayanan Balasankar, Tae Hwan Oh, Venugopal Deivasigamani and Subramaniyan Ramasundaram
Coatings 2023, 13(3), 579; https://doi.org/10.3390/coatings13030579 - 7 Mar 2023
Cited by 10 | Viewed by 2705
Abstract
Plant extracts have been utilized as an ecofriendly natural reducing agent for the synthesis of nanomaterials, including metal oxides. Prickly pear (opuntia) fruit extract (PPE) was used as a reducing agent for the sol–gel synthesis of titanium dioxide nanoparticles (TiO2 NPs) and [...] Read more.
Plant extracts have been utilized as an ecofriendly natural reducing agent for the synthesis of nanomaterials, including metal oxides. Prickly pear (opuntia) fruit extract (PPE) was used as a reducing agent for the sol–gel synthesis of titanium dioxide nanoparticles (TiO2 NPs) and as a sensitizer for the TiO2 NPs photoanode used in dye-sensitized solar cells (DSSCs). Ultraviolet-visible and infrared spectra, X-ray diffraction patterns, and scanning electron microscopic images were confirmed in the formation of semiconducting TiO2 NPs with the predominate size of ~300 nm. The use of PPE rendered discrete TiO2 NPs, whereas the typical synthesis without PPE resulted TiO2 aggregates. TiO2 NPs had a tetragonal crystalline structure, and their grain size was varied with respect to the concentration of PPE. The size of TiO2 crystallites was found to be 20, 19, 15, and 10 nm when the volume percentage of PPE was 0.2, 0.4, 0.6, and 0.8%, respectively. TiO2 NPs obtained using PPE were coated on indium-doped tin oxide substrates and sensitized with natural dye made up of PPE and synthetic dyes, namely rose Bengal (RB) and eosin yellow (EY). The photoanode fabricated with dye-sensitized TiO2 NPs was subjected to current–voltage response studies. The maximum power-conversion efficiency, 1.4%, was recorded for photoanodes sensitized with PPE dye, which is considerably higher than that for RB (1.16%) or EY (0.8%). Overall, the above findings proved that PPE can be used as a potential reducing/capping agent and TiO2 sensitizer for DSSC applications. Full article
(This article belongs to the Special Issue Investigation on Sol–Gel Based Coatings Application)
Show Figures

Graphical abstract

30 pages, 3343 KiB  
Review
Leptospiral Infection, Pathogenesis and Its Diagnosis—A Review
by Antony V. Samrot, Tan Chuan Sean, Karanam Sai Bhavya, Chamarthy Sai Sahithya, SaiPriya Chan-drasekaran, Raji Palanisamy, Emilin Renitta Robinson, Suresh Kumar Subbiah and Pooi Ling Mok
Pathogens 2021, 10(2), 145; https://doi.org/10.3390/pathogens10020145 - 1 Feb 2021
Cited by 73 | Viewed by 24988
Abstract
Leptospirosis is a perplexing conundrum for many. In the existing literature, the pathophysiological mechanisms pertaining to leptospirosis is still not understood in full. Considered as a neglected tropical zoonotic disease, leptospirosis is culminating as a serious problem worldwide, seemingly existing as co-infections with [...] Read more.
Leptospirosis is a perplexing conundrum for many. In the existing literature, the pathophysiological mechanisms pertaining to leptospirosis is still not understood in full. Considered as a neglected tropical zoonotic disease, leptospirosis is culminating as a serious problem worldwide, seemingly existing as co-infections with various other unrelated diseases, including dengue and malaria. Misdiagnosis is also common as non-specific symptoms are documented extensively in the literature. This can easily lead to death, as the severe form of leptospirosis (Weil’s disease) manifests as a complex of systemic complications, especially renal failure. The virulence of Leptospira sp. is usually attributed to the outer membrane proteins, including LipL32. With an armament of virulence factors at their disposal, their ability to easily adhere, invade and replicate within cells calls for a swift refinement in research progress to establish their exact pathophysiological framework. As an effort to reconstitute the current knowledge on leptospirosis, the basis of leptospiral infection, including its risk factors, classification, morphology, transmission, pathogenesis, co-infections and clinical manifestations are highlighted in this review. The various diagnostic techniques are also outlined with emphasis on their respective pros and cons. Full article
Show Figures

Figure 1

Back to TopTop