Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Authors = Priyadarsan Parida ORCID = 0000-0002-6071-764X

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 4735 KiB  
Article
Enhanced Neonatal Brain Tissue Analysis via Minimum Spanning Tree Segmentation and the Brier Score Coupled Classifier
by Tushar Hrishikesh Jaware, Chittaranjan Nayak, Priyadarsan Parida, Nawaf Ali, Yogesh Sharma and Wael Hadi
Computers 2024, 13(10), 260; https://doi.org/10.3390/computers13100260 - 11 Oct 2024
Viewed by 1613
Abstract
Automatic assessment of brain regions in an MR image has emerged as a pivotal tool in advancing diagnosis and continual monitoring of neurological disorders through different phases of life. Nevertheless, current solutions often exhibit specificity to particular age groups, thereby constraining their utility [...] Read more.
Automatic assessment of brain regions in an MR image has emerged as a pivotal tool in advancing diagnosis and continual monitoring of neurological disorders through different phases of life. Nevertheless, current solutions often exhibit specificity to particular age groups, thereby constraining their utility in observing brain development from infancy to late adulthood. In our research, we introduce a novel approach for segmenting and classifying neonatal brain images. Our methodology capitalizes on minimum spanning tree (MST) segmentation employing the Manhattan distance, complemented by a shrunken centroid classifier empowered by the Brier score. This fusion enhances the accuracy of tissue classification, effectively addressing the complexities inherent in age-specific segmentation. Moreover, we propose a novel threshold estimation method utilizing the Brier score, further refining the classification process. The proposed approach yields a competitive Dice similarity index of 0.88 and a Jaccard index of 0.95. This approach marks a significant step toward neonatal brain tissue segmentation, showcasing the efficacy of our proposed methodology in comparison to the latest cutting-edge methods. Full article
(This article belongs to the Special Issue Machine and Deep Learning in the Health Domain 2024)
Show Figures

Figure 1

19 pages, 26922 KiB  
Article
Skin Lesion Extraction Using Multiscale Morphological Local Variance Reconstruction Based Watershed Transform and Fast Fuzzy C-Means Clustering
by Ranjita Rout, Priyadarsan Parida, Youseef Alotaibi, Saleh Alghamdi and Osamah Ibrahim Khalaf
Symmetry 2021, 13(11), 2085; https://doi.org/10.3390/sym13112085 - 3 Nov 2021
Cited by 62 | Viewed by 4147
Abstract
Early identification of melanocytic skin lesions increases the survival rate for skin cancer patients. Automated melanocytic skin lesion extraction from dermoscopic images using the computer vision approach is a challenging task as the lesions present in the image can be of different colors, [...] Read more.
Early identification of melanocytic skin lesions increases the survival rate for skin cancer patients. Automated melanocytic skin lesion extraction from dermoscopic images using the computer vision approach is a challenging task as the lesions present in the image can be of different colors, there may be a variation of contrast near the lesion boundaries, lesions may have different sizes and shapes, etc. Therefore, lesion extraction from dermoscopic images is a fundamental step for automated melanoma identification. In this article, a watershed transform based on the fast fuzzy c-means (FCM) clustering algorithm is proposed for the extraction of melanocytic skin lesion from dermoscopic images. Initially, the proposed method removes the artifacts from the dermoscopic images and enhances the texture regions. Further, it is filtered using a Gaussian filter and a local variance filter to enhance the lesion boundary regions. Later, the watershed transform based on MMLVR (multiscale morphological local variance reconstruction) is introduced to acquire the superpixels of the image with accurate boundary regions. Finally, the fast FCM clustering technique is implemented in the superpixels of the image to attain the final lesion extraction result. The proposed method is tested in the three publicly available skin lesion image datasets, i.e., ISIC 2016, ISIC 2017 and ISIC 2018. Experimental evaluation shows that the proposed method achieves a good result. Full article
Show Figures

Graphical abstract

Back to TopTop