Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (2)

Search Parameters:
Authors = Piet van Wikselaar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 723 KiB  
Article
Bioconversion of Different Waste Streams of Animal and Vegetal Origin and Manure by Black Soldier Fly Larvae Hermetia illucens L. (Diptera: Stratiomyidae)
by Somaya Naser El Deen, Klaas van Rozen, Hellen Elissen, Piet van Wikselaar, Istvan Fodor, Rommie van der Weide, Elise Federica Hoek-van den Hil, Arya Rezaei Far and Teun Veldkamp
Insects 2023, 14(2), 204; https://doi.org/10.3390/insects14020204 - 17 Feb 2023
Cited by 48 | Viewed by 6768
Abstract
Black soldier fly larvae (BSFL) are considered a commercially viable solution for global organic waste problems. The objective of this study was to assess the feasibility of rearing BSFL on a wide range of low-value waste streams and its potential to transform them [...] Read more.
Black soldier fly larvae (BSFL) are considered a commercially viable solution for global organic waste problems. The objective of this study was to assess the feasibility of rearing BSFL on a wide range of low-value waste streams and its potential to transform them into high-quality animal feed and fertilizer. Six waste streams of different origins were selected and each tested in triplicate. Several parameters were analysed: growth performance, waste reduction index (WRI), conversion efficiency (ECI) and larval composition. Frass composition was also analysed. Larvae reared on fast food waste (FFW) had the highest ECI and WRI and the lowest values when reared on pig manure slurry mixed with silage grass (PMLSG) and slaughter waste (SW). The highest protein content was found for larvae reared on mushroom stems (MS) although this substrate had the lowest protein content. Moreover, the frass nutritional profile was proportionally related to the substrate’s nutritional profile: the protein-rich substrate (SW) resulted in protein-rich frass and the low-protein substrate (MS) resulted in protein-poor frass. The same was true for the lipid content. In conclusion, this study showed that BSFL can be successfully reared on a wide range of waste streams that can affect the larval and frass chemical compositions. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

10 pages, 1040 KiB  
Brief Report
Bioconversion of Digestate, Pig Manure and Vegetal Residue-Based Waste Operated by Black Soldier Fly Larvae, Hermetia illucens L. (Diptera: Stratiomyidae)
by Teun Veldkamp, Klaas van Rozen, Hellen Elissen, Piet van Wikselaar and Rommie van der Weide
Animals 2021, 11(11), 3082; https://doi.org/10.3390/ani11113082 - 28 Oct 2021
Cited by 36 | Viewed by 5030
Abstract
Insects can play an important role to upgrade waste streams into high-grade proteins and fats as food and feed ingredients or non-food products. The aim of this research was to assess the feasibility to use waste streams with a low value for direct [...] Read more.
Insects can play an important role to upgrade waste streams into high-grade proteins and fats as food and feed ingredients or non-food products. The aim of this research was to assess the feasibility to use waste streams with a low value for direct application as animal feed as substrates to grow BSF larvae in terms of larval growth rate, waste reduction index, and efficiency of conversion of ingested feed. The growth of black soldier fly (BSF), Hermetia illucens larvae and conversion of biowaste was assessed in triplicate in biowaste substrates: chicken feed (CF; reference diet), pig manure solid (PMS), Betafert® solid (BTFS), swill (SW), olive pulp (OP), pig manure liquid mixed with chicken feed (PMLCF), and silage grass (SG). Per kilogram fresh substrate 2500 starter (8-days-old, second instar) larvae were incubated in 21 plastic containers (75 × 47 × 15 cm). The BSF larvae were fed according to a batch feeding system. Highest growth rate was found in larvae reared on SW (13.4 mg/d). Larval growth rate was even higher than in larvae reared on the reference substrate CF (7.2 mg/d). Growth rate in larvae reared on PMLCF (7.3 mg/d) did not differ from CF, whereas growth rate of larvae reared on PMS (3.2 mg/d) was lower than on CF. Growth rate of larvae reared on BTFS, OP and SG was very low (0.6, 0.2 and 0.7 mg/d, respectively). Waste Reduction Index (WRI) was highest on SW (11.3), followed by PMLCF (9.3), and both were higher than WRI on CF (8.5). Waste Reduction Index further decreased in descending order from PMS, SG, BTFS to OP (7.6, 4.0, 2.9 and 1.7, respectively). The Efficiency of Conversion of Ingested substrate (ECI) was highest on SW (0.31), followed in descending order by PMLCF, CF and PMS (0.25, 0.21 and 0.18, respectively). The substrates OP, BTFS and SG (0.16, 0.15 and 0.14, respectively) resulted in a lower ECI than other substrates. Highest CO2 and lowest NH3 concentrations were found above substrates with the highest larval growth performances. This study showed that BSF larvae can be reared on different biowaste substrates; the growth rate of the larvae was extremely high on SW. The effects of chemical composition and physical properties of the substrates on larval growth and gas emissions should be further considered. Full article
Show Figures

Figure 1

Back to TopTop